A289985 Smallest positive k such that (n+1)^k + (-n)^k is divisible by a square greater than 1.
10, 11, 2, 55, 21, 10, 3, 10, 33, 26, 10, 21, 10, 5, 21, 10, 55, 10, 8, 2, 2, 3, 7, 78, 55, 3, 34, 2, 21, 78, 10, 68, 10, 41, 57, 10, 55, 10, 55, 21, 10
Offset: 1
Examples
a(1) = 10 because (1+1)^10 + (-1)^10 = 1025 is divisible by 5^2.
Links
- Robert Israel, Upper bounds on a(n) for n = 1..2000
Programs
-
Maple
A289985 := proc(n) local k; for k from 1 do if not issqrfree((n+1)^k+(-n)^k) then return k; end if; end do: end proc: for n from 1 do printf("%d,\n",A289985(n)) ; end do: # R. J. Mathar, Sep 04 2017
-
Mathematica
Table[SelectFirst[Range[10^2], ! SquareFreeQ[(n + 1)^# + (-n)^#] &], {n, 23}] (* Michael De Vlieger, Sep 03 2017 *)
Extensions
a(24)-a(41) from Giovanni Resta, Sep 04 2017
Comments