A290015 Brazilian numbers which have exactly two Brazilian representations.
15, 18, 21, 26, 28, 30, 31, 32, 44, 45, 50, 52, 56, 57, 62, 64, 68, 75, 76, 85, 86, 91, 92, 93, 98, 99, 110, 111, 116, 117, 129, 133, 146, 147, 148, 153, 164, 175, 183, 188, 207, 212, 215, 219, 236, 243, 244, 245, 259, 261, 268, 275, 279, 284, 314, 316, 325, 332, 338, 341, 343, 356, 363, 365, 369, 381, 387, 388
Offset: 1
Examples
18 = 2 * 9 = 22_8 = 3 * 6 = 33_5. 26 = 2 * 13 = 2 * 111_3 = 222_3 = 22_12. 31 = 11111_2 = 111_5; 8191 = 1111111111111_2 = 111_90.
Links
- Wikipedia, Goormaghtigh conjecture
Crossrefs
Programs
-
Maple
bresilienbaseb:=proc(n,b) local r,q,coupleq: if n0 then return [couple[1]+1,r] else return [0,0] end if end if end proc; bresil:=proc(n) local b,L,k,t: k:=0: for b from 2 to (n-2) do t:=bresilienbase(n,b): if t[1]>0 then k:=k+1 L[k]:=[b,t[1],t[2]]: end if: end do: seq(L[i],i=1..k); end proc; nbbresil:=n->nops([bresil(n)]); #Numbers 2 times Brazilian for n from 1 to 100 do if nbbresil(n)=2 then print(n,bresil(n)) else fi; od:
-
Mathematica
Flatten@ Position[#, 2] &@ Table[Count[Range[2, n - 2], ?(And[Length@ # != 1, Length@ Union@ # == 1] &@ IntegerDigits[n, #] &)], {n, 400}] (* _Michael De Vlieger, Jul 18 2017 *)
Comments