cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290070 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290070 #13 Jun 13 2025 12:45:03
%S A290070 1,10,101,1100,11101,111100,1111101,11111100,111111101,1111111100,
%T A290070 11111111101,111111111100,1111111111101,11111111111100,
%U A290070 111111111111101,1111111111111100,11111111111111101,111111111111111100,1111111111111111101,11111111111111111100
%N A290070 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.
%C A290070 Initialized with a single black (ON) cell at stage zero.
%D A290070 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290070 Robert Price, <a href="/A290070/b290070.txt">Table of n, a(n) for n = 0..126</a>
%H A290070 Robert Price, <a href="/A290070/a290070.tmp.txt">Diagrams of first 20 stages</a>
%H A290070 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290070 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290070 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290070 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290070 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290070 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290070 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290070 Conjectures from _Colin Barker_, Jul 20 2017: (Start)
%F A290070 G.f.: (1 + 90*x^3 + 100*x^4) / ((1 - x)*(1 + x)*(1 - 10*x)).
%F A290070 a(n) = 10*a(n-1) + a(n-2) - 10*a(n-3) =A283504(n) for n>4.
%F A290070 (End)
%t A290070 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290070 code = 641; stages = 128;
%t A290070 rule = IntegerDigits[code, 2, 10];
%t A290070 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290070 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290070 ca = a;
%t A290070 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290070 PrependTo[ca, a];
%t A290070 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290070 k = (Length[ca[[1]]] + 1)/2;
%t A290070 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290070 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290070 Cf. A290072, A290073, A290074.
%K A290070 nonn,easy
%O A290070 0,2
%A A290070 _Robert Price_, Jul 19 2017