This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290072 #14 Feb 16 2025 08:33:49 %S A290072 1,1,101,11,10111,1111,1011111,111111,101111111,11111111,10111111111, %T A290072 1111111111,1011111111111,111111111111,101111111111111,11111111111111, %U A290072 10111111111111111,1111111111111111,1011111111111111111,111111111111111111,101111111111111111111 %N A290072 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood. %C A290072 Initialized with a single black (ON) cell at stage zero. %D A290072 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170. %H A290072 Robert Price, <a href="/A290072/b290072.txt">Table of n, a(n) for n = 0..126</a> %H A290072 Robert Price, <a href="/A290072/a290072.tmp.txt">Diagrams of first 20 stages</a> %H A290072 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015 %H A290072 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %H A290072 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a> %H A290072 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a> %H A290072 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A290072 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a> %H A290072 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a> %F A290072 Conjectures from _Colin Barker_, Jul 20 2017: (Start) %F A290072 G.f.: (1 - 90*x^3 + 100*x^4) / ((1 - x)*(1 - 10*x)*(1 + 10*x)). %F A290072 a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) =A283505(n) for n>4. %F A290072 (End) %t A290072 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}]; %t A290072 code = 641; stages = 128; %t A290072 rule = IntegerDigits[code, 2, 10]; %t A290072 g = 2 * stages + 1; (* Maximum size of grid *) %t A290072 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *) %t A290072 ca = a; %t A290072 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; %t A290072 PrependTo[ca, a]; %t A290072 (* Trim full grid to reflect growth by one cell at each stage *) %t A290072 k = (Length[ca[[1]]] + 1)/2; %t A290072 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}]; %t A290072 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}] %Y A290072 Cf. A290070, A290073, A290074. %K A290072 nonn,easy %O A290072 0,3 %A A290072 _Robert Price_, Jul 19 2017