cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290072 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290072 #14 Feb 16 2025 08:33:49
%S A290072 1,1,101,11,10111,1111,1011111,111111,101111111,11111111,10111111111,
%T A290072 1111111111,1011111111111,111111111111,101111111111111,11111111111111,
%U A290072 10111111111111111,1111111111111111,1011111111111111111,111111111111111111,101111111111111111111
%N A290072 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.
%C A290072 Initialized with a single black (ON) cell at stage zero.
%D A290072 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290072 Robert Price, <a href="/A290072/b290072.txt">Table of n, a(n) for n = 0..126</a>
%H A290072 Robert Price, <a href="/A290072/a290072.tmp.txt">Diagrams of first 20 stages</a>
%H A290072 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290072 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290072 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290072 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290072 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290072 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290072 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290072 Conjectures from _Colin Barker_, Jul 20 2017: (Start)
%F A290072 G.f.: (1 - 90*x^3 + 100*x^4) / ((1 - x)*(1 - 10*x)*(1 + 10*x)).
%F A290072 a(n) = a(n-1) + 100*a(n-2) - 100*a(n-3) =A283505(n) for n>4.
%F A290072 (End)
%t A290072 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290072 code = 641; stages = 128;
%t A290072 rule = IntegerDigits[code, 2, 10];
%t A290072 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290072 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290072 ca = a;
%t A290072 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290072 PrependTo[ca, a];
%t A290072 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290072 k = (Length[ca[[1]]] + 1)/2;
%t A290072 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290072 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290072 Cf. A290070, A290073, A290074.
%K A290072 nonn,easy
%O A290072 0,3
%A A290072 _Robert Price_, Jul 19 2017