cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290073 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290073 #14 Feb 16 2025 08:33:49
%S A290073 1,2,5,12,29,60,125,252,509,1020,2045,4092,8189,16380,32765,65532,
%T A290073 131069,262140,524285,1048572,2097149,4194300,8388605,16777212,
%U A290073 33554429,67108860,134217725,268435452,536870909,1073741820,2147483645,4294967292,8589934589
%N A290073 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.
%C A290073 Initialized with a single black (ON) cell at stage zero.
%D A290073 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290073 Robert Price, <a href="/A290073/b290073.txt">Table of n, a(n) for n = 0..126</a>
%H A290073 Robert Price, <a href="/A290073/a290073.tmp.txt">Diagrams of first 20 stages</a>
%H A290073 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290073 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290073 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290073 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290073 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290073 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290073 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290073 Conjectures from _Colin Barker_, Jul 20 2017: (Start)
%F A290073 G.f.: (1 + 2*x^3 + 4*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)).
%F A290073 a(n) = 2^(n+1) - 3 = A283506(n) for n>1 and even.
%F A290073 a(n) = 2^(n+1) - 4 = A283506(n) for n>1 and odd.
%F A290073 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>4.
%F A290073 (End)
%t A290073 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290073 code = 641; stages = 128;
%t A290073 rule = IntegerDigits[code, 2, 10];
%t A290073 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290073 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290073 ca = a;
%t A290073 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290073 PrependTo[ca, a];
%t A290073 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290073 k = (Length[ca[[1]]] + 1)/2;
%t A290073 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290073 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290073 Cf. A290070, A290072, A290074.
%K A290073 nonn,easy
%O A290073 0,2
%A A290073 _Robert Price_, Jul 19 2017