cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290074 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290074 #14 Feb 16 2025 08:33:49
%S A290074 1,1,5,3,23,15,95,63,383,255,1535,1023,6143,4095,24575,16383,98303,
%T A290074 65535,393215,262143,1572863,1048575,6291455,4194303,25165823,
%U A290074 16777215,100663295,67108863,402653183,268435455,1610612735,1073741823,6442450943,4294967295
%N A290074 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 641", based on the 5-celled von Neumann neighborhood.
%C A290074 Initialized with a single black (ON) cell at stage zero.
%D A290074 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290074 Robert Price, <a href="/A290074/b290074.txt">Table of n, a(n) for n = 0..126</a>
%H A290074 Robert Price, <a href="/A290074/a290074.tmp.txt">Diagrams of first 20 stages</a>
%H A290074 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290074 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290074 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290074 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290074 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290074 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290074 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290074 Conjectures from _Colin Barker_, Jul 20 2017: (Start)
%F A290074 G.f.: (1 - 2*x^3 + 4*x^4) / ((1 - x)*(1 - 2*x)*(1 + 2*x)).
%F A290074 a(n) = 3*2^(n-1) - 1 = A283507(n) for n>1 and even.
%F A290074 a(n) = 2^(n-1) - 1 = A283507(n) for n>1 and odd.
%F A290074 a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n>4.
%F A290074 (End)
%t A290074 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290074 code = 641; stages = 128;
%t A290074 rule = IntegerDigits[code, 2, 10];
%t A290074 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290074 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290074 ca = a;
%t A290074 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290074 PrependTo[ca, a];
%t A290074 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290074 k = (Length[ca[[1]]] + 1)/2;
%t A290074 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290074 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290074 Cf. A290070, A290072, A290073.
%K A290074 nonn,easy
%O A290074 0,3
%A A290074 _Robert Price_, Jul 19 2017