cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290111 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290111 #15 Feb 16 2025 08:33:49
%S A290111 1,11,101,1101,11101,111101,1111101,11111101,111111101,1111111101,
%T A290111 11111111101,111111111101,1111111111101,11111111111101,
%U A290111 111111111111101,1111111111111101,11111111111111101,111111111111111101,1111111111111111101,11111111111111111101
%N A290111 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.
%C A290111 Initialized with a single black (ON) cell at stage zero.
%D A290111 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290111 Robert Price, <a href="/A290111/b290111.txt">Table of n, a(n) for n = 0..126</a>
%H A290111 Robert Price, <a href="/A290111/a290111.tmp.txt">Diagrams of first 20 stages</a>
%H A290111 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A290111 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290111 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290111 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290111 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290111 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290111 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A290111 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).
%F A290111 From _Chai Wah Wu_, Apr 02 2024: (Start)
%F A290111 a(n) = 11*a(n-1) - 10*a(n-2) for n > 3.
%F A290111 G.f.: (100*x^3 - 10*x^2 + 1)/((x - 1)*(10*x - 1)). (End)
%t A290111 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290111 code = 643; stages = 128;
%t A290111 rule = IntegerDigits[code, 2, 10];
%t A290111 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290111 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290111 ca = a;
%t A290111 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290111 PrependTo[ca, a];
%t A290111 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290111 k = (Length[ca[[1]]] + 1)/2;
%t A290111 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290111 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290111 Cf. A290112, A290113, A290114.
%K A290111 nonn,easy
%O A290111 0,2
%A A290111 _Robert Price_, Jul 19 2017