cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290112 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290112 #17 Feb 16 2025 08:33:49
%S A290112 1,11,101,1011,10111,101111,1011111,10111111,101111111,1011111111,
%T A290112 10111111111,101111111111,1011111111111,10111111111111,
%U A290112 101111111111111,1011111111111111,10111111111111111,101111111111111111,1011111111111111111,10111111111111111111
%N A290112 Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.
%C A290112 Initialized with a single black (ON) cell at stage zero.
%D A290112 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290112 Robert Price, <a href="/A290112/b290112.txt">Table of n, a(n) for n = 0..126</a>
%H A290112 Robert Price, <a href="/A290112/a290112.tmp.txt">Diagrams of first 20 stages</a>
%H A290112 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290112 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290112 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290112 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290112 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290112 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290112 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A290112 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).
%F A290112 From _Chai Wah Wu_, Apr 02 2024: (Start)
%F A290112 a(n) = 11*a(n-1) - 10*a(n-2) for n > 3.
%F A290112 G.f.: (10*x^3 - 10*x^2 + 1)/((x - 1)*(10*x - 1)). (End)
%t A290112 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290112 code = 643; stages = 128;
%t A290112 rule = IntegerDigits[code, 2, 10];
%t A290112 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290112 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290112 ca = a;
%t A290112 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290112 PrependTo[ca, a];
%t A290112 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290112 k = (Length[ca[[1]]] + 1)/2;
%t A290112 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290112 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290112 Cf. A290111, A290113, A290114, A283508, A267623.
%K A290112 nonn,easy
%O A290112 0,2
%A A290112 _Robert Price_, Jul 19 2017