cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290113 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290113 #22 Feb 16 2025 08:33:49
%S A290113 1,3,5,13,29,61,125,253,509,1021,2045,4093,8189,16381,32765,65533,
%T A290113 131069,262141,524285,1048573,2097149,4194301,8388605,16777213,
%U A290113 33554429,67108861,134217725,268435453,536870909,1073741821,2147483645,4294967293,8589934589
%N A290113 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood.
%C A290113 Initialized with a single black (ON) cell at stage zero.
%D A290113 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290113 Robert Price, <a href="/A290113/b290113.txt">Table of n, a(n) for n = 0..126</a>
%H A290113 Robert Price, <a href="/A290113/a290113.tmp.txt">Diagrams of first 20 stages</a>
%H A290113 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015.
%H A290113 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290113 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290113 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290113 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290113 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290113 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H A290113 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).
%F A290113 For n>1, a(n) = 2^(n+1)-3.
%F A290113 a(n) = A036563(n+1) for n > 1. - _Georg Fischer_, Oct 30 2018
%F A290113 From _Chai Wah Wu_, Apr 02 2024: (Start)
%F A290113 a(n) = 3*a(n-1) - 2*a(n-2) for n > 3.
%F A290113 G.f.: (4*x^3 - 2*x^2 + 1)/(2*x^2 - 3*x + 1). (End)
%t A290113 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290113 code = 643; stages = 128;
%t A290113 rule = IntegerDigits[code, 2, 10];
%t A290113 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290113 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290113 ca = a;
%t A290113 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290113 PrependTo[ca, a];
%t A290113 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290113 k = (Length[ca[[1]]] + 1)/2;
%t A290113 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290113 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290113 Essentially the same as A091270.
%Y A290113 Cf. A036563, A290111, A290112, A290114.
%K A290113 nonn,easy
%O A290113 0,2
%A A290113 _Robert Price_, Jul 19 2017