This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290125 #26 May 10 2021 02:36:27 %S A290125 0,0,1,0,0,1,0,2,2,3,0,-2,0,0,1,0,5,3,5,5,6,0,-5,0,-2,0,0,1,0,6,1,6,4, %T A290125 6,6,7,0,-3,3,-2,3,1,3,3,4,0,4,1,7,2,7,5,7,7,8,0,-7,-3,-6,0,-5,0,-2,0, %U A290125 0,1,0,15,8,12,9,15,10,15,13,15,15,16 %N A290125 Square array read by antidiagonals T(n,k) = sigma(k + n) - sigma(k) - n, with n>=0 and k>=1. %C A290125 A015886(n) gives the position of the first zero in the n-th row of this array. %H A290125 Michel Marcus, <a href="/A290125/b290125.txt">Table of n, a(n) for n = 0..5049</a> %F A290125 T(0, k) = 0 for all k. %e A290125 Array begins: %e A290125 0, 0, 0, 0, 0, 0, 0, ... %e A290125 1, 0, 2, -2, 5, -5, 6, ... %e A290125 1, 2, 0, 3, 0, 1, 3, ... %e A290125 3, 0, 5, -2, 6, -2, 7, ... %e A290125 1, 5, 0, 4, 3, 2, 0, ... %e A290125 6, 0, 6, 1, 7, -5, 15, ... %e A290125 1, 6, 3, 5, 0, 10, 0, ... %e A290125 7, 3, 7, -2, 15, -5, 9, ... %e A290125 ... %t A290125 Table[Function[n, If[k + n == 0, 0, DivisorSigma[1, k + n]] - If[k == 0, 0, DivisorSigma[1, k]] - n][m - k], {m, 12}, {k, m, 1, -1}] // Flatten (* _Michael De Vlieger_, Jul 20 2017 *) %o A290125 (PARI) T(n,k) = sigma(k + n) - sigma(k) - n; %o A290125 (PARI) a(n) = n++; my(s = ceil((-1+sqrt(1+8*n))/2));r=n-binomial(s,2)-1;k=s-r;T(r,k) \\ _David A. Corneth_, Jul 20 2017 %o A290125 (Python) %o A290125 from sympy import divisor_sigma %o A290125 l=[] %o A290125 def T(n, k): %o A290125 return 0 if n==0 or k==0 else divisor_sigma(k + n) - divisor_sigma(k) - n %o A290125 for n in range(11): l+=[T(k, n - k + 1) for k in range(n + 1)] %o A290125 print(l) # _Indranil Ghosh_, Jul 21 2017 %Y A290125 Cf. A000203 (sigma), A015886. %K A290125 sign,tabl %O A290125 0,8 %A A290125 _Michel Marcus_, Jul 20 2017