A290131 Number of regions in a regular drawing of the complete bipartite graph K_{n,n}.
0, 2, 12, 40, 96, 204, 368, 634, 1012, 1544, 2236, 3186, 4360, 5898, 7764, 10022, 12712, 16026, 19844, 24448, 29708, 35756, 42604, 50602, 59496, 69650, 80940, 93600, 107540, 123316, 140428, 159642, 180632, 203618, 228556, 255822, 285080, 317326, 352020, 389498
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Martin Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5. See Lemma 2 and Table 1.
- Stéphane Legendre, The Number of Crossings in a Regular Drawing of the Complete Bipartite Graph, J. Integer Seqs., Vol. 12, 2009.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Crossrefs
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Programs
-
Maple
A290131 := proc(n) A115004(n-1)+(n-1)^2 ; end proc: seq(A290131(n),n=1..30) ;
-
Mathematica
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}]; a[n_] := z[n - 1] + (n - 1)^2; Array[a, 40] (* Jean-François Alcover, Mar 24 2020 *)
-
Python
from math import gcd def a115004(n): r=0 for a in range(1, n + 1): for b in range(1, n + 1): if gcd(a, b)==1:r+=(n + 1 - a)*(n + 1 - b) return r def a(n): return a115004(n - 1) + (n - 1)**2 print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 20 2017, after Maple code
-
Python
from sympy import totient def A290131(n): return 2*(n-1)**2 + sum(totient(i)*(n-i)*(2*n-i) for i in range(2,n)) # Chai Wah Wu, Aug 16 2021
Formula
a(n) = A115004(n-1) + (n-1)^2.
a(n) = 2*(n-1)^2 + Sum_{i=2..n-1} (n-i)*(2n-i)*phi(i). - Chai Wah Wu, Aug 16 2021