cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290135 Numbers that are the sum of two proper prime powers (A246547).

This page as a plain text file.
%I A290135 #18 Jul 22 2017 10:19:09
%S A290135 8,12,13,16,17,18,20,24,25,29,31,32,33,34,35,36,40,41,43,48,50,52,53,
%T A290135 54,57,58,59,64,65,68,72,73,74,76,80,81,85,89,90,91,96,97,98,106,108,
%U A290135 113,125,128,129,130,132,133,134,136,137,141,144,145,146,148,150,152,153,155,157,160,162,170,173,174,177,178
%N A290135 Numbers that are the sum of two proper prime powers (A246547).
%C A290135 Is 2213 the largest prime term that can be expressed as the sum of two proper prime powers in more than one way? - _Altug Alkan_, Jul 22 2017
%H A290135 Robert Israel, <a href="/A290135/b290135.txt">Table of n, a(n) for n = 1..10000</a>
%F A290135 Exponents in expansion of (Sum_{k>=1} x^A246547(k))^2.
%e A290135 13 is in the sequence because 13 = 2^2 + 3^2.
%p A290135 N:= 1000: # to get all terms <= N
%p A290135 P:= select(isprime, [$2..floor(sqrt(N))]):
%p A290135 PP:= {seq(seq(p^j, j=2..floor(log[p](N))),p=P)}:
%p A290135 A:= select(`<=`,{seq(seq(PP[i]+PP[j],j=1..i),i=1..nops(PP))},N):
%p A290135 sort(convert(A,list)); # _Robert Israel_, Jul 21 2017
%t A290135 nmax = 180; f[x_] := Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] x^k, {k, 1, nmax}]^2; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]]
%Y A290135 Cf. A014091, A070049, A071330, A071331, A225102, A225103, A246547.
%K A290135 nonn
%O A290135 1,1
%A A290135 _Ilya Gutkovskiy_, Jul 20 2017