This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290135 #18 Jul 22 2017 10:19:09 %S A290135 8,12,13,16,17,18,20,24,25,29,31,32,33,34,35,36,40,41,43,48,50,52,53, %T A290135 54,57,58,59,64,65,68,72,73,74,76,80,81,85,89,90,91,96,97,98,106,108, %U A290135 113,125,128,129,130,132,133,134,136,137,141,144,145,146,148,150,152,153,155,157,160,162,170,173,174,177,178 %N A290135 Numbers that are the sum of two proper prime powers (A246547). %C A290135 Is 2213 the largest prime term that can be expressed as the sum of two proper prime powers in more than one way? - _Altug Alkan_, Jul 22 2017 %H A290135 Robert Israel, <a href="/A290135/b290135.txt">Table of n, a(n) for n = 1..10000</a> %F A290135 Exponents in expansion of (Sum_{k>=1} x^A246547(k))^2. %e A290135 13 is in the sequence because 13 = 2^2 + 3^2. %p A290135 N:= 1000: # to get all terms <= N %p A290135 P:= select(isprime, [$2..floor(sqrt(N))]): %p A290135 PP:= {seq(seq(p^j, j=2..floor(log[p](N))),p=P)}: %p A290135 A:= select(`<=`,{seq(seq(PP[i]+PP[j],j=1..i),i=1..nops(PP))},N): %p A290135 sort(convert(A,list)); # _Robert Israel_, Jul 21 2017 %t A290135 nmax = 180; f[x_] := Sum[Boole[PrimePowerQ[k] && PrimeOmega[k] > 1] x^k, {k, 1, nmax}]^2; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]] %Y A290135 Cf. A014091, A070049, A071330, A071331, A225102, A225103, A246547. %K A290135 nonn %O A290135 1,1 %A A290135 _Ilya Gutkovskiy_, Jul 20 2017