cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290148 a(n) is the integer resulting from the concatenation of the unit digit of n-1 to the digits of n without its own unit digit.

This page as a plain text file.
%I A290148 #20 Feb 23 2025 08:57:06
%S A290148 0,1,2,3,4,5,6,7,8,91,1,11,21,31,41,51,61,71,81,92,2,12,22,32,42,52,
%T A290148 62,72,82,93,3,13,23,33,43,53,63,73,83,94,4,14,24,34,44,54,64,74,84,
%U A290148 95,5,15,25,35,45,55,65,75,85,96,6,16,26,36,46,56,66,76,86,97,7
%N A290148 a(n) is the integer resulting from the concatenation of the unit digit of n-1 to the digits of n without its own unit digit.
%C A290148 Take list of integers n >= 1, move the right-most digit of each term to the start of the next term.
%C A290148 Every number appears, see A381225. - _N. J. A. Sloane_, Feb 23 2025
%H A290148 Michael S. Branicky, <a href="/A290148/b290148.txt">Table of n, a(n) for n = 1..20000</a>
%F A290148 a(n) = (n-1 mod 10)*10^A004216(n) + floor(n/10). # _Robert Israel_, Jul 21 2017
%e A290148 For n=46, n-1 is 45, so a(46) is the concatenation of 5 (the unit digit of 45) and 4 (46 without 6), giving 54.
%e A290148 For n=123, n-1 is 122, so a(123) is the concatenation of 2 (the unit digit of 122) and 12 (123 without 3), giving 212.
%p A290148 f:= n -> (n-1 mod 10) * 10^ilog10(n) + floor(n/10);
%o A290148 (PARI) a(n) = my(precd = (n-1)%10); if (n < 10, precd, eval(concat(Str(precd), Str(n\10))));
%o A290148 (Python)
%o A290148 def a(n): return 0 if n == 1 else int(str((n-1)%10)+ str(n)[:-1])
%o A290148 print([a(n) for n in range(1, 72)]) # _Michael S. Branicky_, Feb 22 2025
%Y A290148 Cf. A004216, A032762, A381225.
%K A290148 nonn,base,look
%O A290148 1,3
%A A290148 _Michel Marcus_, Jul 21 2017