This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290161 #16 Jun 07 2024 11:15:04 %S A290161 752251,1107751,4956781,5647471,6929401,10016521,11516851,12285631, %T A290161 18117991,19280311,21327961,21705517,23946877,24059011,24436891, %U A290161 25976611,26970751,29105731,32254471,32339521,32465077,32542387 %N A290161 Initial primes of 7 consecutive primes with 6 consecutive gaps 12, 10, 8, 6, 4, 2. %C A290161 All terms = {1,7} mod 30. %C A290161 For initial primes of 7 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12 see A190819. %H A290161 Chai Wah Wu, <a href="/A290161/b290161.txt">Table of n, a(n) for n = 1..2000</a> %e A290161 Prime(86279..86285) = {1107751, 1107763, 1107773, 1107781, 1107787, 1107791, 1107793 } and 1107751 + 12 = 1107763, 110763 + 10 = 1107773, 1107773 + 8 = 1107781, 1107781 + 6 = 1107787, 1107787 + 4 = 1107791, 1107791 + 2 = 1107793. %o A290161 (GAP) %o A290161 P:=Filtered([1..100000000],IsPrime);; I:=Reversed([2,4,6,8,10,12]);; %o A290161 P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; %o A290161 P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5]]);; %o A290161 P3:=List(Positions(P2,I),i->P[i]); %Y A290161 Cf. A078847, A190814, A190817, A190819, A190838, A286891, A290162. %K A290161 nonn %O A290161 1,1 %A A290161 _Muniru A Asiru_, Jul 22 2017