cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290191 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290191 #14 Feb 16 2025 08:33:49
%S A290191 1,10,111,1110,11111,111110,1111111,11111110,111111111,1111111110,
%T A290191 11111111111,111111111110,1111111111111,11111111111110,
%U A290191 111111111111111,1111111111111110,11111111111111111,111111111111111110,1111111111111111111,11111111111111111110
%N A290191 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 673", based on the 5-celled von Neumann neighborhood.
%C A290191 Initialized with a single black (ON) cell at stage zero.
%D A290191 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290191 Robert Price, <a href="/A290191/b290191.txt">Table of n, a(n) for n = 0..126</a>
%H A290191 Robert Price, <a href="/A290191/a290191.tmp.txt">Diagrams of first 20 stages</a>
%H A290191 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290191 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290191 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290191 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290191 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290191 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290191 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290191 Conjecture: a(n) is the binary representation of 2^(n - 1) - 1 - (n mod 2).
%t A290191 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290191 code = 673; stages = 128;
%t A290191 rule = IntegerDigits[code, 2, 10];
%t A290191 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290191 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290191 ca = a;
%t A290191 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290191 PrependTo[ca, a];
%t A290191 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290191 k = (Length[ca[[1]]] + 1)/2;
%t A290191 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290191 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290191 Cf. A288335, A140253, A140252.
%K A290191 nonn,easy
%O A290191 0,2
%A A290191 _Robert Price_, Jul 23 2017