cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290194 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 705", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290194 #15 Feb 16 2025 08:33:49
%S A290194 1,2,5,13,28,61,124,253,508,1021,2044,4093,8188,16381,32764,65533,
%T A290194 131068,262141,524284,1048573,2097148,4194301,8388604,16777213,
%U A290194 33554428,67108861,134217724,268435453,536870908,1073741821,2147483644,4294967293,8589934588
%N A290194 Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 705", based on the 5-celled von Neumann neighborhood.
%C A290194 Initialized with a single black (ON) cell at stage zero.
%D A290194 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290194 Robert Price, <a href="/A290194/b290194.txt">Table of n, a(n) for n = 0..126</a>
%H A290194 Robert Price, <a href="/A290194/a290194.tmp.txt">Diagrams of first 20 stages</a>
%H A290194 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290194 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290194 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290194 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290194 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290194 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290194 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290194 Conjecture: a(n) = Fibonacci(2*n+1) if n <= 3, for n > 3, a(n) = 2*a(n-1) + 2 if n is even, a(n) = 2*a(n-1) + 5 if n is odd. It would follow that a(n) = 2^(n+1) - 4 + (n mod 2) for n >= 3. - _David A. Corneth_, Jul 23 2017
%F A290194 From _Chai Wah Wu_, Nov 01 2018: (Start)
%F A290194 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n > 5 (conjectured).
%F A290194 G.f.: (2*x^5 + x^4 + 3*x^3 + 1)/((x - 1)*(x + 1)*(2*x - 1)) (conjectured). (End)
%t A290194 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290194 code = 705; stages = 128;
%t A290194 rule = IntegerDigits[code, 2, 10];
%t A290194 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290194 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290194 ca = a;
%t A290194 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290194 PrependTo[ca, a];
%t A290194 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290194 k = (Length[ca[[1]]] + 1)/2;
%t A290194 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290194 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290194 Cf. A290192, A290193, A290195.
%K A290194 nonn,easy
%O A290194 0,2
%A A290194 _Robert Price_, Jul 23 2017