cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290195 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 705", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A290195 #14 Feb 16 2025 08:33:49
%S A290195 1,1,5,11,7,47,31,191,127,767,511,3071,2047,12287,8191,49151,32767,
%T A290195 196607,131071,786431,524287,3145727,2097151,12582911,8388607,
%U A290195 50331647,33554431,201326591,134217727,805306367,536870911,3221225471,2147483647,12884901887
%N A290195 Decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 705", based on the 5-celled von Neumann neighborhood.
%C A290195 Initialized with a single black (ON) cell at stage zero.
%D A290195 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A290195 Robert Price, <a href="/A290195/b290195.txt">Table of n, a(n) for n = 0..126</a>
%H A290195 Robert Price, <a href="/A290195/a290195.tmp.txt">Diagrams of first 20 stages</a>
%H A290195 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A290195 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A290195 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A290195 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A290195 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A290195 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A290195 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A290195 Conjecture: For odd n > 3, a(n) = 2^(n-1) - 1, for even n > 3, a(n) = 3*2^(n-1) - 1. - _David A. Corneth_, Jul 23 2017
%F A290195 From _Chai Wah Wu_, Nov 01 2018: (Start)
%F A290195 a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) for n > 5 (conjectured).
%F A290195 G.f.: (16*x^5 - 20*x^4 + 6*x^3 + 1)/((x - 1)*(2*x - 1)*(2*x + 1)) (conjectured). (End)
%t A290195 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A290195 code = 705; stages = 128;
%t A290195 rule = IntegerDigits[code, 2, 10];
%t A290195 g = 2 * stages + 1; (* Maximum size of grid *)
%t A290195 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A290195 ca = a;
%t A290195 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A290195 PrependTo[ca, a];
%t A290195 (* Trim full grid to reflect growth by one cell at each stage *)
%t A290195 k = (Length[ca[[1]]] + 1)/2;
%t A290195 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A290195 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A290195 Cf. A290192, A290193, A290194.
%K A290195 nonn,easy
%O A290195 0,3
%A A290195 _Robert Price_, Jul 23 2017