This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290216 #30 Oct 09 2017 00:01:56 %S A290216 1,1,0,1,1,0,1,1,1,0,1,1,3,2,0,1,1,3,2,2,0,1,1,3,5,6,3,0,1,1,3,5,6,7, %T A290216 4,0,1,1,3,5,10,10,12,5,0,1,1,3,5,10,10,18,13,6,0,1,1,3,5,10,15,22,25, %U A290216 22,8,0,1,1,3,5,10,15,22,29,34,26,10,0,1,1,3,5 %N A290216 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i)). %H A290216 Seiichi Manyama, <a href="/A290216/b290216.txt">Antidiagonals n = 0..139, flattened</a> %e A290216 Square array begins: %e A290216 1, 1, 1, 1, 1, ... %e A290216 0, 1, 1, 1, 1, ... %e A290216 0, 1, 3, 3, 3, ... %e A290216 0, 2, 2, 5, 5, ... %e A290216 0, 2, 6, 6, 10, ... %e A290216 0, 3, 7, 10, 10, ... %Y A290216 Columns k=0..3 give A000007, A000009, A293204, A290269. %Y A290216 Rows n=0 gives A000012. %Y A290216 Main diagonal gives A077285. %Y A290216 Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: A290217 (m=-1), this sequence (m=1), A293377 (m=2). %Y A290216 Cf. A293305. %K A290216 nonn,tabl %O A290216 0,13 %A A290216 _Seiichi Manyama_, Oct 06 2017