A290220 Narrow cross sequence (see Comments lines for definition).
0, 2, 6, 10, 18, 26, 34, 42, 58, 70, 78, 94, 106, 114, 130, 142, 150, 166, 178, 186, 202, 214, 222, 238, 250, 258, 274, 286, 294, 310, 322, 330, 346, 358, 366, 382, 394, 402, 418, 430, 438, 454, 466, 474, 490, 502, 510, 526, 538, 546, 562, 574, 582, 598, 610, 618, 634, 646, 654, 670, 682, 690, 706, 718, 726, 742, 754
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1, 0, 1, -1}, {0, 2, 6, 10, 18, 26, 34, 42, 58, 70}, 100] (* Paolo Xausa, Aug 27 2024 *)
-
PARI
concat(0, Vec(2*x*(1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 4*x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2)) + O(x^60))) \\ Colin Barker, Nov 12 2017
Formula
From Colin Barker, Nov 11 2017: (Start)
G.f.: 2*x*(1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 4*x^7 + 2*x^8) / ((1 - x)^2*(1 + x + x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>9. [Corrected by Paolo Xausa, Aug 27 2024]
(End)
Comments