This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290262 #18 Jun 14 2022 15:27:38 %S A290262 1,1,1,1,1,1,2,2,1,1,2,2,1,1,3,4,2,1,3,5,5,3,1,1,4,9,13,13,9,4,1,1,4, %T A290262 9,13,13,9,4,1,1,5,14,25,30,24,12,3,1,5,15,30,42,42,30,15,5,1,1,6,21, %U A290262 48,75,81,60,30,10,2 %N A290262 Irregular triangle read by rows: rows give the (negated) nonzero coefficients of t in each term of the inverse power product expansion of 1 - t * x/(1-x). %C A290262 Row sums are A290261(n). A regular version is A290320. %e A290262 Triangle begins: %e A290262 1; %e A290262 1, 1; %e A290262 1, 1, %e A290262 1, 2, 2, 1; %e A290262 1, 2, 2, 1; %e A290262 1, 3, 4, 2; %e A290262 1, 3, 5, 5, 3, 1; %e A290262 1, 4, 9, 13, 13, 9, 4, 1; %e A290262 1, 4, 9, 13, 13, 9, 4, 1; %e A290262 1, 5, 14, 25, 30, 24, 12, 3; %e A290262 1, 5, 15, 30, 42, 42, 30, 15, 5, 1; %e A290262 1, 6, 21, 48, 75, 81, 60, 30, 10, 2; %t A290262 eptrees[n_]:=Prepend[Join@@Table[Tuples[eptrees/@y],{y,Rest[IntegerPartitions[n]]}],n]; %t A290262 eptrans[a_][n_]:=Sum[(-1)^Count[tree,_List,{0,Infinity}]*Product[a[i],{i,Flatten[{tree}]}],{tree,eptrees[n]}]; %t A290262 Table[DeleteCases[CoefficientList[-eptrans[-t&][n],t],0],{n,12}] %Y A290262 Cf. A220418, A273866, A289501, A290261, A290320. %K A290262 tabf,nonn %O A290262 1,7 %A A290262 _Gus Wiseman_, Jul 24 2017