This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290281 #53 Apr 22 2024 14:28:39 %S A290281 6601,11972017,34657141,67902031,139952671,258634741,2000436751, %T A290281 8801128801,9116583841,9462932431,38069223721,326170416001, %U A290281 359316634951,1860929324101,2022188518351,2283475947391,2648686458601,2697891108151,4513362899761,5020030521001,5472940991761,6163867710001,7507903975951,19288340548471 %N A290281 Numbers k such that (k-1) mod phi(k) = lambda(k), where phi = A000010 and lambda = A002322. %C A290281 Numbers k such that A215486(k) = A002322(k). %C A290281 Subsequence of the Carmichael numbers (A002997). %C A290281 Composite numbers k such that (k-1) == lambda(k) (mod phi(k)). %C A290281 Composite numbers k such that A277127(k) == 1 (mod A000010(k)). %C A290281 Problem: are there infinitely many such numbers? %C A290281 Conjecture: these are numbers k such that phi(k) + lambda(k) = k - 1. Checked up to 2^64. - _Amiram Eldar_ and _Thomas Ordowski_, Dec 06 2019 %H A290281 Amiram Eldar, <a href="/A290281/b290281.txt">Table of n, a(n) for n = 1..239</a> (terms below 10^22 calculated using data from Claude Goutier; terms 1..79 from Robert Israel) %H A290281 Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>. %H A290281 <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>. %p A290281 # Using data files for A002997 %p A290281 count:= 0: %p A290281 for cfile in ["carmichael-16","carmichael17","carmichael18"] do %p A290281 do %p A290281 S:= readline(cfile); %p A290281 if S = 0 then break fi; %p A290281 L:= map(parse, StringTools:-Split(S)); %p A290281 n:= L[1]; pm:= map(`-`,L[2..-1],1); %p A290281 phin:= convert(pm,`*`); %p A290281 lambdan:= ilcm(op(pm)); %p A290281 if n-1 - lambdan mod phin = 0 then %p A290281 count:= count+1; A[count]:= n; %p A290281 fi %p A290281 od: %p A290281 fclose(cfile); %p A290281 od: %p A290281 seq(A[i],i=1..count); # _Robert Israel_, Jul 26 2017 %t A290281 Select[Range[10^8], Divisible[# - 1, (lam = CarmichaelLambda[#])] && Mod[# - 1, EulerPhi[#]] == lam &] (* _Amiram Eldar_, Dec 06 2019 *) %Y A290281 Cf. A000010, A002322, A002997, A215486. %Y A290281 Subsequence of A264012. %K A290281 nonn %O A290281 1,1 %A A290281 _Robert Israel_ and _Thomas Ordowski_, Jul 25 2017