This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290283 #19 Jul 28 2017 09:54:28 %S A290283 3,5,7,11,17,19,23,101,107,109,113,163,283,311,331,347,359,701,1153, %T A290283 1597,1621,2063,2437,2909,3319,6011,12829,46147,46471,74219,112297, %U A290283 128411,178693,223759,268841,407821,526763,925391,927763 %N A290283 Primes p such that A215458(p) is prime. %C A290283 Primes p such that (2^p - (1/2 - (i * sqrt(7))/2)^p - (1/2 + (i * sqrt(7))/2)^p + 1)/2 is prime. %C A290283 It is conjectured that there are infinitely many terms. %e A290283 A215458(3) = 7, A215458(5) = 11, A215458 (7) = 71 are all primes, hence 3, 5, 7 are in this sequence. %p A290283 h := proc(n) option remember; `if`(n=0,2,`if`(n=1,1,h(n-1)-2*h(n-2))) end: %p A290283 select(n->isprime((2^n-h(n)+1)/2),select(isprime,[$1..1000])); # _Peter Luschny_, Jul 26 2017 %t A290283 Function[s, Keys@ KeySelect[s, AllTrue[{#, Lookup[s, #]}, PrimeQ] &]]@ MapIndexed[First[#2] - 1 -> #1 &, LinearRecurrence[{4, -7, 8, -4}, {0, 1, 4, 7}, 7000]] (* _Michael De Vlieger_, Jul 26 2017 *) %o A290283 (PARI) isprime(([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^n*[0; 1; 4; 7])[1, 1]) %Y A290283 Cf. A215458. %K A290283 nonn,more %O A290283 1,1 %A A290283 _Paul S. Vanderveen_, Jul 25 2017