This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290307 #11 Mar 29 2019 15:51:20 %S A290307 1,1,0,1,1,0,1,1,0,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,2,1,1,0,1,1,1,2,1,2, %T A290307 1,0,1,1,1,2,2,2,2,1,0,1,1,1,2,2,2,3,3,2,0,1,1,1,2,2,3,3,3,3,2,0,1,1, %U A290307 1,2,2,3,3,4,4,3,2,0,1,1,1,2,2,3,4,4,4,5,4,2,0,1,1,1,2,2,3,4,4,5,6,6,5,3,0 %N A290307 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^j)/(1 + x^(k*j)). %C A290307 A(n,k) is the number of partitions of n into distinct parts where no part is a multiple of k. %H A290307 Seiichi Manyama, <a href="/A290307/b290307.txt">Antidiagonals n = 0..139, flattened</a> %H A290307 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A290307 G.f. of column k: Product_{j>=1} (1 + x^j)/(1 + x^(k*j)). %F A290307 For asymptotics of column k see comment from _Vaclav Kotesovec_ in A261772. %e A290307 Square array begins: %e A290307 1, 1, 1, 1, 1, 1, ... %e A290307 0, 1, 1, 1, 1, 1, ... %e A290307 0, 0, 1, 1, 1, 1, ... %e A290307 0, 1, 1, 2, 2, 2, ... %e A290307 0, 1, 1, 1, 2, 2, ... %e A290307 0, 1, 2, 2, 2, 3, ... %t A290307 Table[Function[k, SeriesCoefficient[Product[(1 + x^i)/(1 + x^(i k)), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 13}, {n, 0, j}] // Flatten %t A290307 Table[Function[k, SeriesCoefficient[QPochhammer[-1, x]/QPochhammer[-1, x^k], {x, 0, n}]][j - n + 1], {j, 0, 13}, {n, 0, j}] // Flatten %Y A290307 Columns k=1-10 give: A000007, A000700, A003105, A070048, A096938, A261770, A097793, A261771, A112193, A261772. %Y A290307 Cf. A286653. %K A290307 nonn,tabl %O A290307 0,25 %A A290307 _Ilya Gutkovskiy_, Jul 26 2017