A290308 Decimal encoding of the prime factorization of n: for n > 0 with prime factorization Product_{i=1..k} prime(i)^e_i, let E_n = (e_k, ..., e_1), replace each nonzero e_i with A052382(e_i) and each zero e_i with "" in E_n to obtain F_n, concatenate the elements of F_n with a "0" inserted after every element except for the last, and interpret in decimal base.
0, 1, 10, 2, 100, 101, 1000, 3, 20, 1001, 10000, 102, 100000, 10001, 1010, 4, 1000000, 201, 10000000, 1002, 10010, 100001, 100000000, 103, 200, 1000001, 30, 10002, 1000000000, 10101, 10000000000, 5, 100010, 10000001, 10100, 202, 100000000000, 100000001
Offset: 1
Examples
For n = 5120 = 5^1 * 3^0 * 2^10: - E_5120 = (1, 0, 10), - F_5120 = ("1", "", "11"), - a(5120) = 10011. For n = 5040 = 7^1 * 5^1 * 3^2 * 2^4: - E_5040 = (1, 1, 2, 4), - F_5040 = ("1", "1", "2", "4"), - a(5040) = 1010204.
Links
Programs
-
Mathematica
f[n_] := Function[m, Sum[(1 + Mod[Floor[(8 n + 1 - 9^m)/(8*9^j)], 9]) 10^j, {j, 0, m - 1}]]@ Floor@ Log[9, 8 n + 1]; Table[If[n == 1, 0, With[{s = FactorInteger[n] /. {p_, e_} /; p > 0 :> If[p > 1, PrimePi@ p -> f@ e]}, Function[t, FromDigits@ Flatten@ Reverse@ Riffle[#, ConstantArray[0, Length@ #]] &[ReplacePart[t, s] /. 0 -> {}]]@ConstantArray[0, Max[s[[All, 1]] ]]]], {n, 38}] (* Michael De Vlieger, Jul 31 2017 *)
-
PARI
a(n) = { my (f = factor(n), v = 0, nz = 0); for (i=1, #f~, my (x = A052382(f[i,2])); v += x * 10^(nz + primepi(f[i,1]) - 1); nz += #digits(x); ); return (v) }
Comments