A290313 Fourth diagonal sequence of the Sheffer triangle A094816 (special Charlier).
1, 24, 145, 545, 1575, 3836, 8274, 16290, 29865, 51700, 85371, 135499, 207935, 309960, 450500, 640356, 892449, 1222080, 1647205, 2188725, 2870791, 3721124, 4771350, 6057350, 7619625, 9503676, 11760399, 14446495, 17624895, 21365200, 25744136, 30846024, 36763265, 43596840, 51456825, 60462921, 70744999, 82443660, 95710810, 110710250
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
PARI
Vec((1 + 17*x - 2*x^2 - x^3) / (1 - x)^7 + O(x^50)) \\ Colin Barker, Jul 29 2017
Formula
O.g.f: (1 + 17*x - 2*x^2 - x^3)/(1 - x)^7.
E.g.f.: exp(x)*(1 + 23*x + 98*x^2/2! + 181*x^3/3! + 170*x^4/4! + 80*x^5/5! + 15*x^6/6!).
From Colin Barker, Jul 29 2017: (Start)
a(n) = (48 + 256*n + 422*n^2 + 303*n^3 + 105*n^4 + 17*n^5 + n^6) / 48.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
(End)
Comments