This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290315 #16 Jan 25 2020 20:54:31 %S A290315 1,1,2,1,16,12,1,66,284,120,1,224,2872,5952,1680,1,706,21080,116336, %T A290315 146064,30240,1,2160,132228,1531072,4804656,4130304,665280,1,6530, %U A290315 760500,16271080,101422640,208791648,132557760,17297280,1,19648,4155120,151922560,1661273440,6556459008,9657333504,4766423040,518918400,1,59010,21993776,1304454880,23155279200,155184721088,427142449920,477104352768,189945688320,17643225600 %N A290315 Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A154537 (S2[2,1] generalized Stirling2), for n >= 0. %C A290315 The ordinary generating function (o.g.f.) of the (n+1)-th diagonal sequence of the Sheffer triangle A154537 = (e^x, e^(2*x) - 1), called S2[2,1], is GS2(2,1;n,x) = P(n, x)/(1 - 2*x)^(2*n+1), with the row polynomials P(n, x) = Sum_{k=0..n} T(n, k)*x^k, n >= 0. %C A290315 In the general case of Sheffer S2[d,a] = (e^(a*x), e^(d*x) - 1) (with gcd(d,a) = 1, d >= 0, a >= 0, and for d = 1 one takes a = 0) the o.g.f. of the (n+1)-th diagonal sequence is G(d,a;n,x) = P(d,a;n,x)/(1 - d*x)^(2*n + 1) with the numerator polynomial P and coefficient table T(d,a;n,k). %C A290315 For the computation of the exponential generating function (e.g.f.) of the o.g.f.s of the diagonal sequences of a Sheffer triangle (lower triangular matrix) via Lagrange's theorem see a comment in A290311. %H A290315 Wolfdieter Lang, <a href="https://arxiv.org/abs/1708.01421">On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles</a>, arXiv:1708.01421 [math.NT], 2017. %F A290315 T(n, k) = [x^k] P(n, x) with the numerator polynomial in the o.g.f. of the (n+1)-th diagonal sequence of the triangle A154537. See a comment above. %e A290315 The triangle T(n, k) begins: %e A290315 n\k 0 1 2 3 4 5 6 7 ... %e A290315 0: 1 %e A290315 1: 1 2 %e A290315 2: 1 16 12 %e A290315 3: 1 66 284 120 %e A290315 4: 1 224 2872 5952 1680 %e A290315 5: 1 706 21080 116336 146064 30240 %e A290315 6: 1 2160 132228 1531072 4804656 4130304 665280 %e A290315 7: 1 6530 760500 16271080 101422640 208791648 132557760 17297280 %e A290315 ... %e A290315 n = 8: 1 19648 4155120 151922560 1661273440 6556459008 9657333504 4766423040 518918400, %e A290315 n = 9: 1 59010 21993776 1304454880 23155279200 155184721088 427142449920 477104352768 189945688320 17643225600. %e A290315 ... %e A290315 n=3: The o.g.f. of the 4th diagonal sequence of A154537, [1, 80, 1320, ...], is P(3, x) = (1 + 66*x + 284*x^2 + 120*x^3)/(1 - 2*x)^7. %Y A290315 Cf. A154537, A290311. %K A290315 nonn,tabl %O A290315 0,3 %A A290315 _Wolfdieter Lang_, Jul 29 2017