A317174 Elliptic Carmichael numbers for the elliptic curve y^2 = x^3 + 80.
481, 629, 703, 1679, 1763, 1769, 3599, 4991, 5183, 6119, 6989, 7783, 7859, 8797, 8987, 9271, 9407, 9599, 12209, 13817, 14219, 18239, 20999, 24119, 24511, 24803, 26333, 31919, 36577, 38111, 38999, 44099, 46079, 56159, 57599, 58463, 62863, 63503, 67199, 67889, 68741, 70859, 71819, 72899, 76751
Offset: 1
Keywords
Examples
Let N = 481=13*37. The discriminant of E is -16*(4*0^3 + 27*80^2) = -2764800, which is coprime to N. It can be computed that E(Z/13Z) = Z/19Z, and so a_13 = 13 + 1 - 19 = -5 and e_{N,13}(E) = 19. Similarly, E(Z/37Z) = Z/2Z+Z/14Z, so a_37 = 37 + 1 - 28 = 10 and e_{N,37}(E) = 14. Then a_481 = -50, so N+1-a_N = 481 + 1 + 50 = 532, which is divisible by both e_{N,13}(E) and e_{N,37}(E). Hence N is an elliptic Carmichael number for E.
References
- L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Champan and Hall, (2008).
Links
- L. Babinkostova, A. Hernandez-Espiet and H.J. Kim, On Types of Elliptic Pseudoprimes, arXiv:1710.05264 [math.GR], 2017.
- L. Babinkostova, P. Lamkin, A. Lin, and C. Yost-Wolff, Code for computing Carmichael numbers
- D. M. Gordon, On the number of elliptic pseudoprimes , Mathematics of Computations Vol. 52:185 (1989), 231-245.
- J. H. Silverman, Elliptic Carmichael Numbers and Elliptic Korselt Criteria, arXiv:1108.3830 [math.NT], 2011; Acta Arithmetica Vol. 155:3 (2012), 233-246.
Comments