A290349 Least multiplier of n such that n*a(n) becomes a congruent number A003273.
5, 3, 2, 5, 1, 1, 1, 3, 5, 2, 2, 2, 1, 1, 1, 5, 2, 3, 2, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 3, 5, 1, 2, 5, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 5, 3, 2, 1, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 5, 1, 3, 2, 2, 1, 1, 1, 3, 3, 2, 2, 2, 1, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
a(10)=2 as 10*2=20 and 10*3=30 are congruent numbers but 2 is the least multiplier.
Links
- Frank M Jackson, Table of n, a(n) for n = 1..100000
- Keith Conrad, The Congruent Number Problem, The Harvard College Mathematics Review, 2008.
- Giovanni Resta, Congruent numbers Primitive congruent numbers up to 10^7.
- Frank M Jackson, Mma program for generating b-file
Programs
-
Mathematica
Sfcore[n_] := Module[{m, fac=Select[FactorInteger[n], OddQ[#[[2]]] &]}, If[!SquareFreeQ[n], Times@@Table[fac[[m]][[1]], {m, Length[fac]}], n]]; CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[! SquareFreeQ[n], Null[], MemberQ[{5, 6, 7}, Mod[n, 8]], ok=True, OddQ[n]&&Length@Solve[x^2+2y^2+8z^2==n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ[n]&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@Solve[x^2+4y^2+32z^2==n/2, {x, y, z}, Integers], ok=True]; ok)]; lst = {}; Do[AppendTo[lst, (Min[Select[n {1, 2, 3, 5}, CongruentQ[Sfcore[#]] &]])/n], {n, 1, 200}]; lst
Comments