This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290353 #25 Oct 04 2018 20:12:33 %S A290353 1,1,1,1,1,0,1,1,1,0,1,1,2,1,0,1,1,3,3,1,0,1,1,4,6,5,1,0,1,1,5,10,14, %T A290353 7,1,0,1,1,6,15,30,27,11,1,0,1,1,7,21,55,75,58,15,1,0,1,1,8,28,91,170, %U A290353 206,111,22,1,0,1,1,9,36,140,336,571,518,223,30,1,0 %N A290353 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the k-th Euler transform of the sequence with g.f. 1+x. %C A290353 A(n,k) is the number of unlabeled rooted trees with exactly n leaves, all in level k. A(3,3) = 6: %C A290353 : o o o o o o %C A290353 : | | | / \ / \ /|\ %C A290353 : o o o o o o o o o o %C A290353 : | / \ /|\ | | ( ) | | | | %C A290353 : o o o o o o o o o o o o o o %C A290353 : /|\ ( ) | | | | ( ) | | | | | | | %C A290353 : o o o o o o o o o o o o o o o o o o %H A290353 Alois P. Heinz, <a href="/A290353/b290353.txt">Antidiagonals n = 0..140, flattened</a> %H A290353 B. A. Huberman and T. Hogg, <a href="https://doi.org/10.1016/0167-2789(86)90308-1">Complexity and adaptation</a>, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384. %H A290353 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A290353 G.f. of column k=0: 1+x, of column k>0: Product_{j>0} 1/(1-x^j)^A(j,k-1). %e A290353 Square array A(n,k) begins: %e A290353 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A290353 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A290353 0, 1, 2, 3, 4, 5, 6, 7, 8, ... %e A290353 0, 1, 3, 6, 10, 15, 21, 28, 36, ... %e A290353 0, 1, 5, 14, 30, 55, 91, 140, 204, ... %e A290353 0, 1, 7, 27, 75, 170, 336, 602, 1002, ... %e A290353 0, 1, 11, 58, 206, 571, 1337, 2772, 5244, ... %e A290353 0, 1, 15, 111, 518, 1789, 5026, 12166, 26328, ... %e A290353 0, 1, 22, 223, 1344, 5727, 19193, 54046, 133476, ... %p A290353 with(numtheory): %p A290353 A:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add( %p A290353 add(A(d, k-1)*d, d=divisors(j))*A(n-j, k), j=1..n)/n)) %p A290353 end: %p A290353 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A290353 A[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[A[d, k - 1]*d, {d, Divisors[j]}] A[n - j, k], {j, n}]/n]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}]//Flatten (* _Indranil Ghosh_, Jul 30 2017, after Maple code *) %Y A290353 Columns k=1-10 give: A000012, A000041, A001970, A007713, A007714, A290355, A290356, A290357, A290358, A290359. %Y A290353 Rows 0+1,2-10 give: A000012, A001477, A000217, A000330, A007715, A290360, A290361, A290362, A290363, A290364. %Y A290353 Main diagonal gives A290354. %Y A290353 Cf. A144150. %K A290353 nonn,tabl %O A290353 0,13 %A A290353 _Alois P. Heinz_, Jul 28 2017