This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290354 #26 Jun 21 2018 18:22:38 %S A290354 1,1,2,6,30,170,1337,12166,133476,1676364,23970089,383172262, %T A290354 6783362586,131697494825,2783238819896,63605879539200, %U A290354 1563127601683456,41107799958703376,1151957989511106438,34268629198432285436,1078577860182473404134,35809701458658690462644 %N A290354 a(n) is the n-th term of the n-th Euler transform of the sequence with g.f. 1+x. %C A290354 a(n) is also the number of unlabeled rooted trees with exactly n leaves, all in level n. a(3) = 6: %C A290354 : o o o o o o %C A290354 : | | | / \ / \ /|\ %C A290354 : o o o o o o o o o o %C A290354 : | / \ /|\ | | ( ) | | | | %C A290354 : o o o o o o o o o o o o o o %C A290354 : /|\ ( ) | | | | ( ) | | | | | | | %C A290354 : o o o o o o o o o o o o o o o o o o %H A290354 Alois P. Heinz, <a href="/A290354/b290354.txt">Table of n, a(n) for n = 0..414</a> %H A290354 B. A. Huberman and T. Hogg, <a href="https://doi.org/10.1016/0167-2789(86)90308-1">Complexity and adaptation</a>, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384. %H A290354 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A290354 a(n) = A290353(n,n). %F A290354 Conjecture: a(n) ~ c * 2^n * n^(n-4/3) / Pi^n, where c = 4.4923... - _Vaclav Kotesovec_, Aug 14 2017 %p A290354 with(numtheory): %p A290354 b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add( %p A290354 add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n)) %p A290354 end: %p A290354 a:= n-> b(n$2): %p A290354 seq(a(n), n=0..25); %t A290354 b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, n], {n, 0, 30}] (* _Indranil Ghosh_, Jul 30 2017, after Maple code *) %Y A290354 Main diagonal of A290353. %Y A290354 Cf. A139383, A305725. %K A290354 nonn %O A290354 0,3 %A A290354 _Alois P. Heinz_, Jul 28 2017