This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290372 #37 Aug 01 2019 18:27:28 %S A290372 7,0,8,5,9,2,6,6,6,1,8,5,3,0,0,7,4,8,1,1,4,2,6,8,7,8,7,3,2,4,1,6,1,5, %T A290372 1,1,5,4,5,0,2,2,9,0,6,9,2,1,7,4,7,2,2,2,2,1,7,5,8,7,8,5,2,4,8,0,6,9, %U A290372 6,4,4,8,5,8,3,0,8,6,5,2,5,0,6,6,9,9,1,5 %N A290372 10-adic integer x = ...5807 satisfying x^5 = x. %C A290372 Also x^2 = A091661. %H A290372 Seiichi Manyama, <a href="/A290372/b290372.txt">Table of n, a(n) for n = 0..9999</a> %F A290372 p = A120817 = ...186432, q = A018247 = ...890625, x = p - q = ...295807. %e A290372 7^5 - 7 == 0 mod 10, %e A290372 7^5 - 7 == 0 mod 10^2, %e A290372 807^5 - 807 == 0 mod 10^3, %e A290372 5807^5 - 5807 == 0 mod 10^4. %e A290372 From _Seiichi Manyama_, Aug 01 2019: (Start) %e A290372 2^(5^0) - 5^(2^0) == 7 mod 10, %e A290372 2^(5^1) - 5^(2^1) == 7 mod 10^2, %e A290372 2^(5^2) - 5^(2^2) == 807 mod 10^3, %e A290372 2^(5^3) - 5^(2^3) == 5807 mod 10^4. (End) %o A290372 (Ruby) %o A290372 def P(n) %o A290372 s1, s2 = 2, 8 %o A290372 n.times{|i| %o A290372 m = 10 ** (i + 1) %o A290372 (0..9).each{|j| %o A290372 k1, k2 = j * m + s1, (9 - j) * m + s2 %o A290372 if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0 %o A290372 s1, s2 = k1, k2 %o A290372 break %o A290372 end %o A290372 } %o A290372 } %o A290372 s1 %o A290372 end %o A290372 def Q(s, n) %o A290372 n.times{|i| %o A290372 m = 10 ** (i + 1) %o A290372 (0..9).each{|j| %o A290372 k = j * m + s %o A290372 if (k ** 2 - k) % (m * 10) == 0 %o A290372 s = k %o A290372 break %o A290372 end %o A290372 } %o A290372 } %o A290372 s %o A290372 end %o A290372 def A290372(n) %o A290372 str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse %o A290372 (0..n).map{|i| str[i].to_i} %o A290372 end %o A290372 p A290372(100) %Y A290372 Cf. A120817, A120818, A290373, A290374, A290375. %Y A290372 Cf. A091661, A018247. %K A290372 nonn,base %O A290372 0,1 %A A290372 _Seiichi Manyama_, Jul 28 2017