This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290373 #29 Aug 01 2019 18:27:35 %S A290373 3,4,9,2,2,9,7,0,9,1,8,5,6,7,4,0,4,6,3,0,8,2,8,1,2,7,9,2,6,3,0,3,8,6, %T A290373 6,6,2,6,6,7,1,3,4,4,5,3,2,0,8,3,1,6,7,7,5,6,6,6,8,4,9,7,5,6,9,8,0,7, %U A290373 9,0,3,0,4,3,8,9,9,2,7,9,5,3,3,7,0,6,4,8 %N A290373 10-adic integer x = ...2943 satisfying x^5 = x. %C A290373 Also x^2 = A091661. %H A290373 Seiichi Manyama, <a href="/A290373/b290373.txt">Table of n, a(n) for n = 0..9999</a> %F A290373 p = A120818 = ...813568, q = A018247 = ...890625, x = p - q = ...922943. %e A290373 3^5 - 3 == 0 mod 10, %e A290373 43^5 - 43 == 0 mod 10^2, %e A290373 943^5 - 943 == 0 mod 10^3, %e A290373 2943^5 - 2943 == 0 mod 10^4. %e A290373 From _Seiichi Manyama_, Aug 01 2019: (Start) %e A290373 8^(5^0) - 5^(2^0) == 3 mod 10, %e A290373 8^(5^1) - 5^(2^1) == 43 mod 10^2, %e A290373 8^(5^2) - 5^(2^2) == 943 mod 10^3, %e A290373 8^(5^3) - 5^(2^3) == 2943 mod 10^4. (End) %o A290373 (Ruby) %o A290373 def P(n) %o A290373 s1, s2 = 2, 8 %o A290373 n.times{|i| %o A290373 m = 10 ** (i + 1) %o A290373 (0..9).each{|j| %o A290373 k1, k2 = j * m + s1, (9 - j) * m + s2 %o A290373 if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0 %o A290373 s1, s2 = k1, k2 %o A290373 break %o A290373 end %o A290373 } %o A290373 } %o A290373 s2 %o A290373 end %o A290373 def Q(s, n) %o A290373 n.times{|i| %o A290373 m = 10 ** (i + 1) %o A290373 (0..9).each{|j| %o A290373 k = j * m + s %o A290373 if (k ** 2 - k) % (m * 10) == 0 %o A290373 s = k %o A290373 break %o A290373 end %o A290373 } %o A290373 } %o A290373 s %o A290373 end %o A290373 def A290373(n) %o A290373 str = (10 ** (n + 1) + P(n) - Q(5, n)).to_s.reverse %o A290373 (0..n).map{|i| str[i].to_i} %o A290373 end %o A290373 p A290373(100) %Y A290373 Cf. A120817, A120818, A290372, A290374, A290375. %Y A290373 Cf. A091661, A120818. %K A290373 nonn,base %O A290373 0,1 %A A290373 _Seiichi Manyama_, Jul 28 2017