This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290374 #34 Aug 01 2019 18:27:42 %S A290374 7,5,0,7,7,0,2,9,0,8,1,4,3,2,5,9,5,3,6,9,1,7,1,8,7,2,0,7,3,6,9,6,1,3, %T A290374 3,3,7,3,3,2,8,6,5,5,4,6,7,9,1,6,8,3,2,2,4,3,3,3,1,5,0,2,4,3,0,1,9,2, %U A290374 0,9,6,9,5,6,1,0,0,7,2,0,4,6,6,2,9,3,5,1 %N A290374 10-adic integer x = ...7057 satisfying x^5 = x. %C A290374 Also x^2 = A091661. %H A290374 Seiichi Manyama, <a href="/A290374/b290374.txt">Table of n, a(n) for n = 0..9999</a> %F A290374 p = A120817 = ...186432, q = A018247 = ...890625, x = p + q = ...077057. %e A290374 7^5 - 7 == 0 mod 10, %e A290374 57^5 - 57 == 0 mod 10^2, %e A290374 57^5 - 57 == 0 mod 10^3, %e A290374 7057^5 - 7057 == 0 mod 10^4. %e A290374 From _Seiichi Manyama_, Aug 01 2019: (Start) %e A290374 2^(5^0) + 5^(2^0) == 7 mod 10, %e A290374 2^(5^1) + 5^(2^1) == 57 mod 10^2, %e A290374 2^(5^2) + 5^(2^2) == 57 mod 10^3, %e A290374 2^(5^3) + 5^(2^3) == 7057 mod 10^4. (End) %o A290374 (Ruby) %o A290374 def P(n) %o A290374 s1, s2 = 2, 8 %o A290374 n.times{|i| %o A290374 m = 10 ** (i + 1) %o A290374 (0..9).each{|j| %o A290374 k1, k2 = j * m + s1, (9 - j) * m + s2 %o A290374 if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0 %o A290374 s1, s2 = k1, k2 %o A290374 break %o A290374 end %o A290374 } %o A290374 } %o A290374 s1 %o A290374 end %o A290374 def Q(s, n) %o A290374 n.times{|i| %o A290374 m = 10 ** (i + 1) %o A290374 (0..9).each{|j| %o A290374 k = j * m + s %o A290374 if (k ** 2 - k) % (m * 10) == 0 %o A290374 s = k %o A290374 break %o A290374 end %o A290374 } %o A290374 } %o A290374 s %o A290374 end %o A290374 def A290374(n) %o A290374 str = (P(n) + Q(5, n)).to_s.reverse %o A290374 (0..n).map{|i| str[i].to_i} %o A290374 end %o A290374 p A290374(100) %Y A290374 x^5 = x: A120817 (...6432), A120818 (...3568), A290372 (...5807), A290373 (...2943), this sequence (...7057), A290375 (...4193). %Y A290374 Cf. A091661, A018247. %K A290374 nonn,base %O A290374 0,1 %A A290374 _Seiichi Manyama_, Jul 28 2017