This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290375 #34 Aug 01 2019 18:27:48 %S A290375 3,9,1,4,0,7,3,3,3,8,1,4,6,9,9,2,5,1,8,8,5,7,3,1,2,1,2,6,7,5,8,3,8,4, %T A290375 8,8,4,5,4,9,7,7,0,9,3,0,7,8,2,5,2,7,7,7,7,8,2,4,1,2,1,4,7,5,1,9,3,0, %U A290375 3,5,5,1,4,1,6,9,1,3,4,7,4,9,3,3,0,0,8,4 %N A290375 10-adic integer x = ...4193 satisfying x^5 = x. %C A290375 Also x^2 = A091661. %H A290375 Seiichi Manyama, <a href="/A290375/b290375.txt">Table of n, a(n) for n = 0..9999</a> %F A290375 p = A120818 = ...813568, q = A018247 = ...890625, x = p + q = ...704193. %e A290375 3^5 - 3 == 0 mod 10, %e A290375 93^5 - 93 == 0 mod 10^2, %e A290375 193^5 - 193 == 0 mod 10^3, %e A290375 4193^5 - 4193 == 0 mod 10^4. %e A290375 From _Seiichi Manyama_, Aug 01 2019: (Start) %e A290375 8^(5^0) + 5^(2^0) == 3 mod 10, %e A290375 8^(5^1) + 5^(2^1) == 93 mod 10^2, %e A290375 8^(5^2) + 5^(2^2) == 193 mod 10^3, %e A290375 8^(5^3) + 5^(2^3) == 4193 mod 10^4. (End) %o A290375 (Ruby) %o A290375 def P(n) %o A290375 s1, s2 = 2, 8 %o A290375 n.times{|i| %o A290375 m = 10 ** (i + 1) %o A290375 (0..9).each{|j| %o A290375 k1, k2 = j * m + s1, (9 - j) * m + s2 %o A290375 if (k1 ** 5 - k1) % (m * 10) == 0 && (k2 ** 5 - k2) % (m * 10) == 0 %o A290375 s1, s2 = k1, k2 %o A290375 break %o A290375 end %o A290375 } %o A290375 } %o A290375 s2 %o A290375 end %o A290375 def Q(s, n) %o A290375 n.times{|i| %o A290375 m = 10 ** (i + 1) %o A290375 (0..9).each{|j| %o A290375 k = j * m + s %o A290375 if (k ** 2 - k) % (m * 10) == 0 %o A290375 s = k %o A290375 break %o A290375 end %o A290375 } %o A290375 } %o A290375 s %o A290375 end %o A290375 def A290375(n) %o A290375 str = (P(n) + Q(5, n)).to_s.reverse %o A290375 (0..n).map{|i| str[i].to_i} %o A290375 end %o A290375 p A290375(100) %Y A290375 x^5 = x: A120817 (...6432), A120818 (...3568), A290372 (...5807), A290373 (...2943), A290374 (...7057), this sequence (...4193). %Y A290375 Cf. A091661, A120818. %K A290375 nonn,base %O A290375 0,1 %A A290375 _Seiichi Manyama_, Jul 28 2017