cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290385 Base-ten pandigital factorization integers. The normal factorization (primes raised to greater-than-one exponents) of these numbers uses each digit exactly once.

Original entry on oeis.org

15618090, 20824120, 22022490, 22816290, 22908090, 23294190, 23427135, 23507490, 24843120, 26104560, 26152080, 26679990, 27114690, 27687090, 28275690, 29218704, 29363320, 29447898, 29544690, 29582490, 29670378, 29688144, 29910138, 30120144
Offset: 1

Views

Author

Hans Havermann, Jul 28 2017

Keywords

Comments

The sequence contains 14856143 terms, the largest being 7^986543210.
The corresponding zeroless sequence contains 2295201 terms, from 2992890 = 2*3*5*67*1489 to 7^98654321. - Giovanni Resta, Jul 29 2017

Examples

			20824120 is in the sequence because 2^3*5*487*1069 is pandigital.
		

Crossrefs

Programs

  • Mathematica
    pop[d_, mn_] := Union @@ Table[ Select[ FromDigits /@ Flatten[ Permutations /@ Subsets[d, {k}], 1], # > mn && PrimeQ[#] &], {k, IntegerLength@ mn, Length[d]}]; ric[w_, d_, p_] := If[d == {}, cnt++; If[Max[Last /@ w] < 30 && Times @@ (Power @@@ w) <= 4*10^7, AppendTo[L, w]], Block[{pp = pop[d, p], v}, Do[v = Complement[d, IntegerDigits@ x]; ric[Append[w, {x, 1}], v, x]; Do[If[e > 1, ric[Append[w, {x, e}], Complement[v, IntegerDigits@e], x]], {e, Union[ FromDigits /@ Flatten[ Permutations /@ Subsets[v, {1, Length@v}], 1]]}], {x, pp}]]]; Monitor[cnt = 0; L = {}; ric[{}, Range[0, 9], 1];, cnt]; Print["cnt = ", cnt]; Sort[(Times @@ (Power @@@ #)) & /@ L] (* Giovanni Resta, Jul 29 2017 *)