cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290389 Inverse to A290308.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 9, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 27, 268435456, 536870912, 1073741824, 2147483648, 4294967296
Offset: 0

Views

Author

Rémy Sigrist, Jul 29 2017

Keywords

Comments

The sequence n -> a(n-1) (with n > 0) is an analog of A005940 for the decimal base.
a(A052382(k) * 10^(n-1)) = prime(n)^k for any n > 0 and k > 0 (where prime(n) is the n-th prime).

Examples

			A290308(1) = 0, hence a(0) = 1.
A290308(2) = 1, hence a(1) = 2.
A290308(3) = 10, hence a(10) = 3.
A290308(4) = 2, hence a(2) = 4.
A290308(5) = 100, hence a(100) = 5.
A290308(6) = 101, hence a(101) = 6.
A290308(7) = 1000, hence a(1000) = 7.
A290308(8) = 3, hence a(3) = 8.
A290308(9) = 20, hence a(20) = 9.
A290308(10) = 1001, hence a(1001) = 10.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Function[m, Sum[(1 + Mod[Floor[(8 n + 1 - 9^m)/(8*9^j)], 9]) 10^j, {j, 0, m - 1}]]@ Floor@ Log[9, 8 n + 1]; Block[{nn = 35, s},s = Association@ Array[f@ # -> # &, nn]; {1}~Join~Table[Times @@ MapIndexed[Prime[First[#2]]^#1 &, If[DigitCount[n, 10, 0] > 0, Function[t, Reverse@ Flatten@ Apply[Join, {SplitBy[Take[Reverse@ t, Length@ t - Length@ #],0] /. z_List /; First@ z == 0 :> Most@ z, #}] &@ TakeWhile[t, # == 0 &]]@ Reverse@ IntegerDigits[n], {Lookup[s, n]}]], {n, nn}]] (* Michael De Vlieger, Jul 31 2017 *)
  • PARI
    See Links section.