A290394 First k-Ramanujan prime, where k = 1 + 1/n.
2, 11, 11, 29, 29, 37, 37, 53, 127, 127, 127, 127, 127, 149, 149, 149, 211, 223, 223, 223, 307, 307, 331, 331, 331, 331, 331, 331, 331, 541, 541, 541, 541, 541, 541, 541, 541, 541, 541, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1361, 1693
Offset: 1
Keywords
Examples
a(1) = first 2-Ramanujan prime = first 1/2-Ramanujan prime = first Ramanujan prime = A104272(1) = 2. a(3) = first 4/3-Ramanujan prime = first 3/4-Ramanujan prime = A193880(1) = 11.
Links
- N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13; arXiv:1108.0475 [math.NT], 2011.
- Christian Axler, On generalized Ramanujan primes, Ramanujan J., online 30 April 2015, 1-30.
- Christian Axler and Thomas Leßmann, An explicit upper bound for the first k-Ramanujan prime, arXiv:1504.05485 [math.NT], 2015.
- Christian Axler and Thomas Leßmann, On the first k-Ramanujan prime, Amer. Math. Monthly, 124 (2017), 642-646; correction by J. Sondow, Editor's endnotes, Amer. Math. Monthly, 124 (2017), 985.
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
Programs
-
Mathematica
A = {3, 5, 7, 10, 12, 16, 31, 35, 47, 48, 63, 67, 100, 218, 264, 298, 328, 368, 430, 463, 591, 651, 739, 758, 782, 843, 891, 929, 1060, 1184, 1230, 1316, 1410, 1832, 2226, 3386, 3645, 3794, 3796, 4523, 4613, 4755, 5009, 5950}; kR1[k_] := If[k >= 5/3, 2, (m = 1; While[k >= Prime[A[[m]]]/Prime[A[[m]] - 1] || k < Prime[A[[m + 1]]]/Prime[A[[m + 1]] - 1], m++]; Prime[A[[m]]])]; Table[kR1[1 + 1/n], {n, 70}]
Comments