A290427 Rearrangement of primes such that every partial product minus 1 is a prime.
3, 2, 5, 13, 7, 11, 19, 43, 79, 31, 17, 71, 89, 23, 41, 67, 29, 73, 83, 107, 59, 53, 239, 101, 109, 233, 61, 197, 97, 103, 37, 211, 113, 157, 167, 131, 181, 179, 269, 127, 421, 47, 523, 173, 331, 307, 149, 347, 257, 199, 277, 139, 151, 433, 223, 449, 227, 313, 647, 443, 283, 929, 509
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[s_List] := Block[{p = Times @@ s, q = 2}, While[ MemberQ[s, q] || !PrimeQ[p*q - 1], q = NextPrime@ q]; Append[s, q]]; Nest[f, {3}, 40]
Formula
3*2*5*...*a(n) -1 is prime. a(n) is the least prime not previously in the sequence.
Comments