This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290490 #20 Feb 16 2025 08:33:49 %S A290490 1,2,6,10,14,18,22,26,30,42,60,66,78,102,114,138,150,174,186,210,330, %T A290490 390,462,510,546,570,690,798,858,870,930,1050,1110,1218,1230,1290, %U A290490 1410,1470,1590,1722,1770,1830,2010,2130,2190,2310,2730,3570,3990,4290,4830,5610,6006,6090,6510,7410,7590,7770 %N A290490 Numbers k such that (sum of proper unitary divisors of k) > (sum of proper unitary divisors of m) for all m < k. %C A290490 Numbers k such that A034460(k) > A034460(m) for all m < k. %H A290490 Amiram Eldar, <a href="/A290490/b290490.txt">Table of n, a(n) for n = 1..1000</a> %H A290490 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a> %H A290490 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a> %t A290490 mx = -1; t = {}; Do[u = DivisorSum[n, # &, GCD[#, n/#] == 1 &] - n; If[u > mx, mx = u; AppendTo[t, n]], {n, 8000}]; t %o A290490 (PARI) sumud(n) = sumdiv(n, d, if (gcd(d, n/d)==1, d)) - n; %o A290490 lista(nn) = {lasts = -1; for (n=1, nn, if ((news = sumud(n)) > lasts, print1(n, ", "); lasts = news););} \\ _Michel Marcus_, Aug 04 2017 %Y A290490 Cf. A002182, A002093, A034090, A034448, A034460, A063919, A280013, A281782, A285614. %K A290490 nonn %O A290490 1,2 %A A290490 _Ilya Gutkovskiy_, Aug 03 2017