A334086 Positive numbers not of the form 2*x^4 + y*(y+1)/2 + z*(z+1)/2 with x,y,z nonnegative integers.
19, 82, 109, 118, 145, 149, 271, 280, 296, 349, 350, 371, 392, 454, 491, 643, 670, 692, 754, 755, 923, 937, 986, 989, 1021, 1031, 1150, 1189, 1210, 1294, 1346, 1372, 1610, 1682, 1699, 1720, 1819, 1913, 2050, 2065, 2141, 2227, 2479, 2524, 2753, 2996, 3184, 3451, 3590, 3805, 3968, 4129, 4139, 4199, 4261, 4706
Offset: 1
Keywords
Examples
a(1) = 19 since 19 is the first nonnegative integer which cannot be written as the sum of two triangular numbers and twice a fourth power.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..216
- Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), no. 2, 97-120. (Cf. Conjecture 1.4(ii).)
Programs
-
Mathematica
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]; tab={};Do[Do[If[TQ[n-2x^4-y(y+1)/2],Goto[aa]],{x,0,(n/2)^(1/4)},{y,0,(Sqrt[4(n-2x^4)+1]-1)/2}];tab=Append[tab,n];Label[aa],{n,0,5000}];Print[tab]
Comments