cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334086 Positive numbers not of the form 2*x^4 + y*(y+1)/2 + z*(z+1)/2 with x,y,z nonnegative integers.

Original entry on oeis.org

19, 82, 109, 118, 145, 149, 271, 280, 296, 349, 350, 371, 392, 454, 491, 643, 670, 692, 754, 755, 923, 937, 986, 989, 1021, 1031, 1150, 1189, 1210, 1294, 1346, 1372, 1610, 1682, 1699, 1720, 1819, 1913, 2050, 2065, 2141, 2227, 2479, 2524, 2753, 2996, 3184, 3451, 3590, 3805, 3968, 4129, 4139, 4199, 4261, 4706
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 14 2020

Keywords

Comments

Conjecture: The sequence has totally 216 terms as listed in the b-file.
As none of the 216 terms in the b-file is divisible by 3, the conjecture implies that for each nonnegative integer n we can write 3*n as 2*x^4 + y*(y+1)/2 + z*(z+1)/2 and hence 12*n+1 = 8*x^4 + (y+z+1)^2 + (y-z)^2, where x,y,z are integers.
Our computation indicates that after the 216-th term 4592329 there are no other terms below 10^8.
It is known that each n = 0,1,2,... can be written as the sum of two triangular numbers and twice a square.
a(217) > 10^9, if it exists. - Giovanni Resta, Apr 14 2020

Examples

			a(1) = 19 since 19 is the first nonnegative integer which cannot be written as the sum of two triangular numbers and twice a fourth power.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[Do[If[TQ[n-2x^4-y(y+1)/2],Goto[aa]],{x,0,(n/2)^(1/4)},{y,0,(Sqrt[4(n-2x^4)+1]-1)/2}];tab=Append[tab,n];Label[aa],{n,0,5000}];Print[tab]

A260418 Number of ways to write 12*n+5 as 4*x^4 + 4*y^2 + z^2, where x is a nonnegative integer, and y and z are positive integers.

Original entry on oeis.org

1, 2, 2, 2, 1, 3, 2, 4, 3, 2, 3, 2, 5, 2, 3, 3, 2, 4, 3, 3, 3, 2, 5, 2, 3, 3, 2, 6, 3, 4, 3, 5, 6, 3, 3, 5, 3, 5, 4, 2, 5, 4, 7, 3, 2, 7, 4, 6, 2, 2, 4, 3, 8, 4, 1, 2, 4, 8, 6, 2, 5, 2, 7, 4, 4, 3, 4, 5, 2, 4, 5, 6, 4, 3, 2, 5, 2, 7, 4, 5, 5, 2, 5, 3, 6, 5, 4, 7, 3, 4, 3, 5, 9, 3, 4, 3, 5, 11, 4, 5, 5
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 04 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 4, 54, 159, 289, 999, 1175, 1404, 16391, 39688.
(ii) All the numbers 24*n+4 (n = 0,1,2,...) can be written as 3*x^4+24*y^2+z^2, where x,y,z are integers with x > 0 and z > 0.
(iii) All the numbers 24*n+13 (n = 0,1,2,...) can be written as 3*x^4+9*y^2+z^2 with x,y,z positive integers.
(iv) All the numbers 24*n+r (n = 0,1,2,...) can be written as a*x^4+b*y^2+c*z^2 with x an integer and y and z positive integers, provided that (r,a,b,c) is among the following quadruples: (5,3,1,1), (5,12,4,1), (7,3,6,1), (10,5,1,1), (11,3,8,3), (11,6,3,2), (17,9,4,1).
See A290491 for a similar conjecture.

Examples

			a(4) = 1 since 12*4+5 = 4*0^4 + 4*1^2 + 7^2.
a(54) = 1 since 12*54+5 = 4*0^4 + 4*11^2 + 13^2.
a(159) = 1 since 12*159+5 = 4*0^4 + 4*4^2 + 43^2.
a(289) = 1 since 12*289+5 = 4*1^4 + 4*19^2 + 45^2.
a(999) = 1 since 12*999+5 = 4*7^4 + 4*21^2 + 25^2.
a(1175) = 1 since 12*1175+5 = 4*3^4 + 4*55^2 + 41^2.
a(1404) = 1 since 12*1404+5 = 4*3^4 + 4*10^2 + 127^2.
a(16391) = 1 since 12*16391+5 = 4*5^4 + 4*207^2 + 151^2.
a(39688) = 1 since 12*39688+5 = 4*5^4 + 4*50^2 + 681^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[12n+5-4x^4-4y^2],r=r+1],{x,0,((12n+5)/4)^(1/4)},{y,1,Sqrt[(12n+5-4x^4)/4]}];Print[n," ",r],{n,0,100}]

A291123 Number of ways to write 4*n+1 as (p-1)^2 + q^2 + r^2, where p is prime and q and r are nonnegative integers with q <= r.

Original entry on oeis.org

1, 2, 2, 1, 3, 3, 1, 3, 3, 2, 5, 3, 2, 4, 2, 3, 4, 4, 2, 3, 4, 2, 4, 1, 2, 8, 4, 2, 3, 5, 3, 5, 5, 2, 4, 4, 4, 6, 5, 3, 8, 4, 3, 6, 1, 5, 7, 6, 2, 5, 6, 3, 8, 3, 3, 5, 5, 5, 4, 4, 5, 6, 3, 2, 7, 8, 4, 8, 5, 2, 8, 5, 3, 8, 7, 4, 6, 4, 3, 4, 8
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 17 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n, and a(n) = 1 only for n = 0, 3, 6, 23, 44.
(ii) Any positive integer relatively prime to 6 can be written as (p-1)^2 + q^2 + 3*r^2, where p is prime, and q and r are integers.
(iii) Let n be any nonnegative integer. Then 4*n+1 can be written as x^2 + y^2 + z^2, where x,y,z are nonnegative integers with x + y + 2*z prime; 4*n+2 can be written as x^2 + y^2 + z^2, where x,y,z are nonnegative integers with x + 3*y prime. Also, we can write 4*n+3 as 2*x^2 + y^2 + z^2, where x,y,z are nonnegative integers with 2*x+1 prime.
(iv) Let n be any nonnegative integer. Then we can write 4*n+1 as x^2 + y^2 + z^2 with x,y,z integers such that x^2 + 5*y^2 + 7*z^2 prime, and write 4*n+2 as x^2 + y^2 + z^2 with x,y,z integers such that x^2 + 2*y^2 + 5*z^2 prime. Also, we can write 8*n+3 as x^2 + y^2 + z^2 with x,y,z integers such that 2*x^2 + 4*y^2 + 5*z^2 is prime.
Note that by the Gauss-Legendre theorem any positive integer not of the form 4^k*(8*m+7) (k,m = 0,1,2,...) can be written as the sum of three squares.

Examples

			a(0) = 1 since 4*0+1 = (2-1)^2 + 0^2 + 0^2 with 2 prime.
a(3) = 1 since 4*3+1 = (3-1)^2 + 0^2 + 3^2 with 3 prime.
a(6) = 1 since 4*6+1 = (5-1)^2 + 0^2 + 3^2 with 5 prime.
a(23) = 1 since 4*23+1 = (3-1)^2 + 5^2 + 8^2 with 3 prime.
a(44) = 1 since 4*44+1 = (3-1)^2 + 2^2 + 13^2 with 3 prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[PrimeQ[p]&&SQ[4n+1-(p-1)^2-q^2],r=r+1],{p,2,Sqrt[4n+1]+1},{q,0,Sqrt[(4n+1-(p-1)^2)/2]}];Print[n," ",r],{n,0,80}]
Showing 1-3 of 3 results.