This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290507 #17 Jun 23 2022 20:37:10 %S A290507 1,5,7,11,13,17,23,29,31,37,41,47,67,73,83,89,97,101,103,107,127,131, %T A290507 139,151,157,163,169,179,181,199,221,227,239,241,263,307,313,323,337, %U A290507 347,349,353,359,361,379,383,389,391,397,421,457,463,467,491,499,521,527,601,619,643,653,667,673,709,713 %N A290507 Sums and differences of products of the first n primes partitioned into two disjoint parts. %C A290507 Partition the set Pn = {2,3,5,...,pn} of the first n primes into two disjoint parts. Let a,b be their respective products, S = a + b and D = |a - b|. The list is composed of sorted values of S and D. %C A290507 Numbers a,b share no common factors. It follows that the prime factors of S or D can't divide either a or b. So the smallest possible prime factor of S or D is pn+1. %C A290507 After the value 1, the next 25 numbers of the list are primes. Then the proportion of primes decreases. For the first 2000 elements, about 50% are primes. %H A290507 C. Aebi and G. Cairns, <a href="https://www.parabola.unsw.edu.au/2000-2009/volume-45-2009/issue-1/article/partitions-primes">Partitions of Primes</a>, Parabola, Vol. 45, No. 1 (2009). %e A290507 3 - 2 = 1 %e A290507 2 + 3 = 5 %e A290507 2*5 - 3 = 7 %e A290507 2*3 + 5 = 11 %e A290507 2*5 + 3 = 13 %e A290507 3*5 + 2 = 17 %e A290507 2*3*5 - 7 = 23 %e A290507 2*7 + 3*5 = 29 %e A290507 2*5 + 3*7 = 31 %e A290507 ... %o A290507 (JavaScript) %o A290507 <script> %o A290507 /************************** %o A290507 Sum and Difference of multiplication of two complementary subset the n first primes %o A290507 ****************************/ %o A290507 // List of the first primes %o A290507 var P=new Array(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97); %o A290507 function Sum_and_Difference(n) %o A290507 { %o A290507 var L=[]; // Table used to have the two partitions of a set of elements %o A290507 var a=1; // First product of primes %o A290507 var b=1; // Second product of primes %o A290507 var Ok = 0; // if n is only composed of 1 %o A290507 var S,D; // Sum and Difference of products of primes %o A290507 // Generate a table L containing n in binary digits : 0 and 1 values in L are used to obtain the two partitions %o A290507 do %o A290507 { %o A290507 var r=n%2; %o A290507 L.push(r); %o A290507 n=(n-r)/2; %o A290507 }while(n!=0); %o A290507 for(var i=0;i < L.length ; i++) %o A290507 { %o A290507 if(L[i] == 0) %o A290507 { %o A290507 Ok = 1; %o A290507 a = a * P[i]; %o A290507 } %o A290507 else %o A290507 b = b * P[i]; %o A290507 } %o A290507 if (Ok) %o A290507 { %o A290507 D = Math.abs(a-b); %o A290507 document.write(D + " = |" + a + " - " + b + "| </BR> "); %o A290507 S = a+b; %o A290507 document.write(S + " = " + a + " + " + b + " </BR> "); %o A290507 } %o A290507 } %o A290507 for (var j = 1 ; j < 32 ; j++) %o A290507 { %o A290507 Sum_and_Difference(j); %o A290507 } %o A290507 </script> %K A290507 nonn %O A290507 1,2 %A A290507 _Yves Debeuret_, Aug 04 2017