This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290515 #51 Jun 17 2024 07:50:27 %S A290515 1,5,13,19,32,53,1024,89,512,139,536870912,199,144115188075855859,293, %T A290515 65521,1831,8192,1069,147573952589676412909,887,524288,1129, %U A290515 549755813888,4177,17179869184,2477,16384,2971,131072,1331,34359738337,5591,18014398509481951,8467,33554432,9551 %N A290515 a(n) = smallest number that is the start of a gap of size n between successive prime powers (A000961), or 0 if no such number exists. %C A290515 Conjecture: a(n) always exists. %C A290515 When n is odd a(n) is equal to 2^k or 2^k-n for a suitable k. - _Giovanni Resta_, Aug 07 2017 %C A290515 Apparently, a(n) = A110968(n-1) - 1 for n >= 3. - _Hugo Pfoertner_, Jun 17 2024 %H A290515 Robert G. Wilson v, <a href="/A290515/b290515.txt">Table of n, a(n) for n = 1..315</a> %H A290515 Robert G. Wilson v, <a href="/A290515/a290515.txt">Table of n, a(n) for n = 1..1000, or 0 if no such number is known.</a> %e A290515 a(1) = 1 since 2 - 1 = 1; %e A290515 a(2) = 5 since 7 - 5 = 2; %e A290515 a(3) = 13 since 16 - 13 = 3; %e A290515 a(4) = 19 since 23 - 19 = 4; %e A290515 a(5) = 32 since 37 - 32 = 5; etc. %t A290515 nxt[n_] := nxt[n] = Block[{k = n + 1}, While[! PrimePowerQ@k, k++]; k]; prv[n_] := prv[n] = Block[{k = n - 1}, While[! PrimePowerQ@k, k--]; k]; f[n_] := Block[{d = 0, exp = 2, p, q}, While[d == 0, p = prv[2^exp]; q = nxt[2^exp]; If[n == 2^exp - p, d = p]; If[n == q - 2^exp, d = 2^exp]; exp++]; d]; Do[ t[n] = f[n], {n, 3, 99, 2}]; p = 1; q = 2; t[_] = 0; While[p < 1110000, d = q - p; If[t[d] == 0, t[d] = p]; p = q; q = nxt@ q]; t@# & /@ Range@ 100 %Y A290515 Cf. A000230, A000961, A023056, A110968, A373334. %K A290515 nonn %O A290515 1,2 %A A290515 _Robert G. Wilson v_, Aug 04 2017 %E A290515 a(13)-a(34) from _Giovanni Resta_, Aug 07 2017