This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290516 #24 Aug 02 2018 15:08:45 %S A290516 1,3,39,2109,417153,346720179,1233891662727,17484682043488557, %T A290516 1077565432934756756289,290674711165255613845226787, %U A290516 320439909778519092353160948081831,1554385919734090411686737202215725913181,33245671345010828575975932818988836416481765697 %N A290516 Number of diagonalizable n X n matrices over GF(3). %H A290516 Michael De Vlieger, <a href="/A290516/b290516.txt">Table of n, a(n) for n = 0..56</a> %H A290516 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018. %H A290516 Kent E. Morrison, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %F A290516 a(n)/A053290(n) is the coefficient of x^n in (Sum_{n>=0} x^n/A053290(n))^3. %t A290516 nn = 12; g[ n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[ %t A290516 QFactorial[n, q]] /. q -> 3; G[z_] := Sum[z^k/g[k], {k, 0, nn}];Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^3, {z, 0, nn}], z] %Y A290516 Cf. A053290, A132186. %Y A290516 Row sums of A296605. %K A290516 nonn %O A290516 0,2 %A A290516 _Geoffrey Critzer_, Aug 04 2017