cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290529 Inverse of the factorization matrix in the Lambert series factorization theorem.

This page as a plain text file.
%I A290529 #20 Nov 18 2018 09:56:08
%S A290529 1,0,1,1,1,1,2,1,1,1,4,3,2,1,1,5,3,2,2,1,1,10,7,5,3,2,1,1,12,9,6,4,3,
%T A290529 2,1,1,20,14,10,7,5,3,2,1,1,25,18,13,10,6,5,3,2,1,1,41,30,22,15,11,7,
%U A290529 5,3,2,1,1,47,36,26,19,14,10,7,5,3,2,1,1
%N A290529 Inverse of the factorization matrix in the Lambert series factorization theorem.
%C A290529 The entries in the inverse matrix for the sequence s_(n,k) := [q^n] (q^k) / (1-q^k) (q; q)_inf = s_o(n, k) - s_e(n, k),
%C A290529 which is the difference of the number of k's in all partitions of n into an odd (even) number of distinct parts. The sequence arises in identities related to _the_ original formulation of the Lambert series factorization theorem in Merca's article in Ramanujan J. below.
%C A290529 In particular, for a fixed arithmetic function f, we may expand its Lambert series generating function by the factorization
%C A290529 Sum_{n>=1} f(n)*q^n/(1-q^n) = (1/(q; q)_inf) Sum_{n>=1} Sum_{k=1..n} s_(n,k) f(k) q^n, and then by inversion by this sequence, denoted s_(n,k)^(-1), we have the corresponding identity that
%C A290529 f(n) = Sum_{k=1..n} s_(n,k)^(-1) Sum_{j: G_j <= k} (-1)^ceiling(j/2) (f * 1)(k - G_j), where G_j denotes the sequence of interleaved pentagonal numbers (A001318) for j >= 1.
%H A290529 M. Merca, <a href="https://doi.org/10.1007/s11139-016-9856-3">The Lambert series factorization theorem</a>, Ramanujan J. (2017).
%H A290529 M. Merca and M. D. Schmidt, <a href="https://arxiv.org/abs/1706.00393">Generating special arithmetic functions by Lambert series factorizations</a>, arXiv:1706.00393 [math.NT], 2017.
%H A290529 M. D. Schmidt, <a href="https://arxiv.org/abs/1701.06257">New recurrence relations and matrix equations for arithmetic functions generated by Lambert series</a>, arXiv:1701.06257 [math.NT], Acta Arith. (2017).
%F A290529 Möbius transform of the shifted partition numbers (A000041), p(n-k).
%F A290529 An explicit formula for the triangular sequence is given by:
%F A290529 s_(n,k)^(-1) = Sum_{d|n} p(d-k)*Mobius(n/d), where p(n) is Euler's partition function (A000041) and Mobius(n) is the Mobius function (A008683).
%F A290529 The first column of the sequence is A133732.
%F A290529 The sequence s_(n,k)^(-1) - p(n-k) is expanded as the following similarly shaped triangle:
%F A290529    0;
%F A290529   -1,  0;
%F A290529   -1,  0,  0;
%F A290529   -1, -1,  0,  0;
%F A290529   -1,  0,  0,  0,  0;
%F A290529   -2, -2, -1,  0,  0,  0;
%F A290529   -1,  0,  0,  0,  0,  0,  0;
%F A290529   -3, -2, -1, -1,  0,  0,  0,  0;
%F A290529   -2, -1, -1,  0,  0,  0,  0,  0,  0;
%F A290529   -5, -4, -2, -1, -1,  0,  0,  0,  0,  0;
%F A290529   -1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0;
%F A290529   -9, -6, -4, -3, -1, -1,  0,  0,  0,  0,  0,  0;
%F A290529 (in other words, the nonzero terms in the triangle after subtracting off p(n-k) are comparatively sparse at only about half of the remaining entries).
%F A290529 The Lambert series generating function for the sequence at a fixed k >= 1 is given by: Sum_{n >= 1} s_(n,k)^(-1) q^n/(1-q^n) = q^k / (q; q)_inf.
%F A290529 The similarly shaped triangle denoting the inverse matrix of the sequence is given by:
%F A290529    1;
%F A290529    0,  1;
%F A290529   -1, -1,  1;
%F A290529   -1,  0, -1,  1;
%F A290529   -1, -1, -1, -1,  1;
%F A290529    0,  0,  1, -1, -1,  1;
%F A290529    0,  0, -1,  0, -1, -1,  1;
%F A290529    1,  0,  0,  1,  0, -1, -1,  1;
%F A290529    1,  1,  1,  0,  0,  0, -1, -1,  1;
%F A290529    1,  0,  0, -1,  2,  0,  0, -1, -1,  1;
%F A290529    1,  1,  0,  1, -1,  1,  0,  0, -1, -1,  1;
%F A290529    1,  0,  1,  1,  0,  1,  1,  0,  0, -1, -1,  1.
%e A290529 Triangle begins:
%e A290529    1,
%e A290529    0, 1,
%e A290529    1, 1, 1,
%e A290529    2, 1, 1, 1,
%e A290529    4, 3, 2, 1, 1,
%e A290529    5, 3, 2, 2, 1, 1,
%e A290529   10, 7, 5, 3, 2, 1, 1,
%e A290529   ...
%t A290529 (* View as a table *)
%t A290529 Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &], {n, 1, 12}, {k, 1, n}] // TableForm
%t A290529 (* Flattened sequence entry as listed here *)
%t A290529 Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &], {n, 1, 12}, {k, 1, n}] // Flatten
%t A290529 (* Compare with its inverse matrix *)
%t A290529 Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &], {n, 1, 12}, {k, 1, 12}] // Inverse // MatrixForm
%t A290529 Table[SeriesCoefficient[(q^k)/(1-q^k) QPochhammer[q, q], {q, 0, n}], {n, 1, 12}, {k, 1, 12}] // MatrixForm
%t A290529 (* Remove dominant partition function terms in the sequence *)
%t A290529 Table[DivisorSum[n, PartitionsP[# - k] MoebiusMu[n/#] &]-PartitionsP[n-k], {n, 1, 12}, {k, 1, n}] // TableForm
%o A290529 (PARI) T(n, k) = sumdiv(n, d, numbpart(d-k)*moebius(n/d));
%o A290529 tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Nov 17 2018
%Y A290529 Cf. A133732, A000041, A078616 (first column of the inverse sequence).
%K A290529 nonn,tabl
%O A290529 1,7
%A A290529 _Maxie D. Schmidt_, Aug 04 2017