This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290558 #24 Dec 04 2022 13:06:15 %S A290558 4,5,4,0,5,4,5,4,2,0,0,4,5,5,6,4,5,5,2,0,5,3,4,0,0,3,1,1,0,3,2,1,6,5, %T A290558 0,3,6,2,0,4,2,2,0,2,4,2,2,4,0,5,3,2,5,3,5,2,4,0,0,6,3,1,1,5,5,4,6,0, %U A290558 0,5,5,4,2,2,2,4,3,0,0,3,0,5,2,2,4,4,5,3 %N A290558 Coefficients in 7-adic expansion of sqrt(2). %H A290558 Seiichi Manyama, <a href="/A290558/b290558.txt">Table of n, a(n) for n = 0..10000</a> %H A290558 Peter Bala, <a href="/A051277/a051277.pdf">Using Chebyshev polynomials to find the p-adic square roots of 2 and 3</a>, Dec 2022. %F A290558 a(n) = 6 - A051277(n) for n > 0. %F A290558 Equals the 7-adic limit as n -> oo of 2*T(7^n,2) = the 7-adic limit as n -> oo of (2 + sqrt(3))^(7^n) + (2 - sqrt(3))^(7^n), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Nov 20 2022 %p A290558 t := proc(n) option remember; if n = 1 then 4 else irem(t(n-1)^7 - 7*t(n-1)^5 + 14*t(n-1)^3 - 7*t(n-1), 7^n) end if; end: %p A290558 convert(t(100), base, 7); # _Peter Bala_, Nov 20 2022 %o A290558 (Ruby) %o A290558 require 'OpenSSL' %o A290558 def f_a(ary, a) %o A290558 (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i} %o A290558 end %o A290558 def df(ary) %o A290558 (1..ary.size - 1).map{|i| i * ary[i]} %o A290558 end %o A290558 def A(c_ary, k, m, n) %o A290558 x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m %o A290558 f_ary = c_ary.map{|i| x * i} %o A290558 f_ary[1] += 1 %o A290558 d_ary = [] %o A290558 ary = [0] %o A290558 a, mod = k, m %o A290558 (n + 1).times{|i| %o A290558 b = a % mod %o A290558 d_ary << (b - ary[-1]) / m ** i %o A290558 ary << b %o A290558 a = f_a(f_ary, b) %o A290558 mod *= m %o A290558 } %o A290558 d_ary %o A290558 end %o A290558 def A290558(n) %o A290558 A([-2, 0, 1], 4, 7, n) %o A290558 end %o A290558 p A290558(100) %o A290558 (PARI) { my(v=Vecrev( digits( truncate( (2+O(7^100))^(1/2) ), 7) )); vector(#v,k,6-v[k]+(k==1)) } \\ _Joerg Arndt_, Aug 06 2017 %Y A290558 Cf. A051277, A290559. %K A290558 nonn %O A290558 0,1 %A A290558 _Seiichi Manyama_, Aug 05 2017