This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290566 #18 Oct 24 2018 02:33:12 %S A290566 3,0,2,2,3,1,4,0,2,3,0,0,4,0,4,4,3,1,1,2,0,0,2,4,0,0,2,1,4,2,2,4,0,4, %T A290566 2,3,1,2,3,0,0,2,0,3,4,4,2,3,2,0,4,1,2,2,3,3,0,4,2,2,3,4,4,3,4,0,2,1, %U A290566 2,3,4,4,2,3,3,0,3,4,1,3,1,0,2,2,1,4,4,1 %N A290566 Coefficients in 5-adic expansion of 2^(1/3). %H A290566 Seiichi Manyama, <a href="/A290566/b290566.txt">Table of n, a(n) for n = 0..10000</a> %o A290566 (Ruby) %o A290566 require 'OpenSSL' %o A290566 def f_a(ary, a) %o A290566 (0..ary.size - 1).inject(0){|s, i| s + ary[i] * a ** i} %o A290566 end %o A290566 def df(ary) %o A290566 (1..ary.size - 1).map{|i| i * ary[i]} %o A290566 end %o A290566 def A(c_ary, k, m, n) %o A290566 x = OpenSSL::BN.new((-f_a(df(c_ary), k)).to_s).mod_inverse(m).to_i % m %o A290566 f_ary = c_ary.map{|i| x * i} %o A290566 f_ary[1] += 1 %o A290566 d_ary = [] %o A290566 ary = [0] %o A290566 a, mod = k, m %o A290566 (n + 1).times{|i| %o A290566 b = a % mod %o A290566 d_ary << (b - ary[-1]) / m ** i %o A290566 ary << b %o A290566 a = f_a(f_ary, b) %o A290566 mod *= m %o A290566 } %o A290566 d_ary %o A290566 end %o A290566 def A290566(n) %o A290566 A([-2, 0, 0, 1], 3, 5, n) %o A290566 end %o A290566 p A290566(100) %o A290566 (PARI) Vecrev( digits( truncate( (2+O(5^100))^(1/3) ), 5) ) \\ _Joerg Arndt_, Aug 06 2017 %Y A290566 Cf. A290563, A290567. %K A290566 nonn %O A290566 0,1 %A A290566 _Seiichi Manyama_, Aug 06 2017