cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290569 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).

This page as a plain text file.
%I A290569 #31 Aug 22 2017 21:19:07
%S A290569 1,1,1,1,1,2,1,1,3,5,1,1,5,15,14,1,1,9,61,105,42,1,1,17,297,1385,945,
%T A290569 132,1,1,33,1585,24273,50521,10395,429,1,1,65,8865,485729,3976209,
%U A290569 2702765,135135,1430,1,1,129,50881,10401345,372281761,1145032281,199360981,2027025,4862
%N A290569 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).
%F A290569 G.f. of column k: 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))), a continued fraction.
%e A290569 G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k+1) + 4^k + 6^k + 1)*x^3 + ...
%e A290569 Square array begins:
%e A290569 :  1,    1,      1,        1,          1,            1,  ...
%e A290569 :  1,    1,      1,        1,          1,            1,  ...
%e A290569 :  2,    3,      5,        9,         17,           33,  ...
%e A290569 :  5,   15,     61,      297,       1585,         8865,  ...
%e A290569 : 14,  105,   1385,    24273,     485729,     10401345,  ...
%e A290569 : 42,  945,  50521,  3976209,  372281761,  38103228225,  ...
%t A290569 Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten
%Y A290569 Columns k=0-4 give: A000108, A001147, A000364, A216966, A227887.
%Y A290569 Main diagonal gives A291333.
%Y A290569 Cf. A000051 (row 2).
%K A290569 nonn,tabl
%O A290569 0,6
%A A290569 _Ilya Gutkovskiy_, Aug 08 2017