This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A290573 #30 Aug 15 2017 20:36:54 %S A290573 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,7,7,7,7,7,9,9,9,9,9,12,12,12, %T A290573 12,12,16,16,16,16,16,20,20,20,20,20,25,25,25,25,25,31,31,31,31,31,37, %U A290573 37,37,37,37,44,44,44,44,44,52,52,52,52,52,62,62,62,62,62,73,73,73,73,73,85,85,85,85,85,99 %N A290573 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(k+2)*(k+3)/24)). %C A290573 Number of partitions of n into nonzero 4-dimensional pyramidal numbers (A000332). %H A290573 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %H A290573 <a href="/index/Par#part">Index entries for related partition-counting sequences</a> %F A290573 G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(k+2)*(k+3)/24)). %e A290573 a(10) = 3 because we have [5, 5], [5, 1, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %t A290573 nmax = 85; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (k + 2) (k + 3)/24)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A290573 Cf. A000292, A000332, A007294, A068980, A290792. %K A290573 nonn %O A290573 0,6 %A A290573 _Ilya Gutkovskiy_, Aug 15 2017