cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A290574 Self numbers that are the product of two self numbers greater than one.

This page as a plain text file.
%I A290574 #18 Nov 09 2018 21:32:25
%S A290574 9,378,400,525,602,1155,1188,1862,2055,2200,2325,2415,2492,2560,2907,
%T A290574 3045,3348,3392,3460,3515,3717,3752,3965,4180,4360,4382,4415,4865,
%U A290574 4920,5115,5418,5517,5719,6138,6228,6900,7038,7060,7396,7532,7565,7609,7947,8162,8342,8465,8520,8700,8757,8869,8970,9152,9365,9387,9409,9420,9422,9499,9870,9925
%N A290574 Self numbers that are the product of two self numbers greater than one.
%H A290574 Charles R Greathouse IV, <a href="/A290574/b290574.txt">Table of n, a(n) for n = 1..10000</a>
%e A290574 The product of the self numbers 31 and 75 is the self number 2325, so 2325 is in the sequence.
%t A290574 Block[{nn = 10^4, s}, s = Rest@ Complement[Range@ nn, Union[Table[n + Total@ IntegerDigits@ n, {n, nn}]]]; Select[Range@ nn, Function[n, And[MemberQ[s, n], AnyTrue[Map[{#, n/#} &, Rest@ TakeWhile[Divisors@ n, # <= Sqrt@ n &]], AllTrue[#, MemberQ[s, #] &] &]]]]] (* or *)
%t A290574 Block[{nn = 5000, s}, s = Rest@ Complement[Range@ nn, Union@ Table[n + Total@ IntegerDigits@ n, {n, nn}]]; Select[Union@ Sort@ Map[Times @@ # &@ # &, Tuples[s, {2}]], MemberQ[s, #] &]] (* _Michael De Vlieger_, Aug 23 2017, after _T. D. Noe_ at A003052 *)
%o A290574 (PARI) is(n)=if(!is_A003052(n), return(0)); fordiv(n,d, if(d==1, next); if(d^2>n, break); if(is_A003052(d) && is_A003052(n/d), return(1))); 0 \\ _Charles R Greathouse IV_, Aug 23 2017
%o A290574 (PARI) is_A290574(n)={is_A003052(n) && fordiv(n,d, d^2>n && break; d>1 && is_A003052(d) && is_A003052(n/d) && return(1))} \\ _M. F. Hasler_, Nov 09 2018
%Y A290574 Cf. A003052, A290426.
%K A290574 nonn,base
%O A290574 1,1
%A A290574 _Peter Weiss_, Aug 06 2017
%E A290574 Corrected by _Charles R Greathouse IV_, Aug 23 2017