A290595 Triangle T(n, k) read by rows: row n gives the coefficients of the numerator polynomials of the o.g.f. of the (n+1)-th diagonal of the Sheffer triangle A286718 (|S1hat[3,1]| generalized Stirling 1), for n >= 0.
1, 1, 2, 4, 19, 4, 28, 222, 147, 8, 280, 3194, 4128, 887, 16, 3640, 55024, 113566, 52538, 4835, 32, 58240, 1107336, 3268788, 2562676, 555684, 25167, 64, 1106560, 25526192, 100544412, 117517960, 45415640, 5301150, 128203, 128, 24344320, 663605680, 3325767376, 5352311764, 3189383200, 695714590, 47537320, 646519, 256, 608608000, 19213911360, 118361719296, 248493947496, 208996478388, 72479948400, 9696965250, 410038434, 3245139, 512
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 2 2: 4 19 4 3: 28 222 147 8 4: 280 3194 4128 887 16 5: 3640 55024 113566 52538 4835 32 6: 58240 1107336 3268788 2562676 555684 25167 6 7: 1106560 25526192 100544412 117517960 45415640 5301150 128203 128 ... n = 8: 24344320 663605680 3325767376 5352311764 3189383200 695714590 47537320 646519 256, n = 9: 608608000 19213911360 118361719296 248493947496 208996478388 72479948400 9696965250 410038434 3245139 512. n = 3: The o.g.f. of the 4th diagonal sequence of A286718, [28, 418, 2485, ...] = A024213(n+1), n >= 0, is P(3, x) = (28 + 222*x + 147*x^2 + 8*x^3)/(1 - 3*x)^7.
Links
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
Formula
T(n, k) = [x^k] P(n, x) with the numerator polynomials of the o.g.f. GD(n, x) = P(n, x)/(1-x)^(2*n+1) of the (n+1)-th diagonal sequence of the triangle A286718. See a comment above.
Comments